INDICAZIONI PER LA PROGETTAZIONE ED ELEMENTI PER IL CAPITOLATO dei prodotti vetrari per l’edilizia

EDIZIONE SETTEMBRE 2015
PREFAZIONE

La collaborazione avviata da alcuni anni tra Assovetro ed Anci ha permesso di individuare e definire alcuni strumenti di informazione e di supporto rivolti ai professionisti ed ai vari operatori interessati ed impegnati nell’individuazione e nelle scelte del prodotto vetrario più corretto e più adeguato alla singola applicazione.

Non sempre, infatti, vengono immediatamente riconosciute le prerogative e le prestazioni del singolo vetro installato in un edificio, perché la sua connaturata trasparenza non lascia rilevare le alte prestazioni che questo può assicurare, come pure non sempre è possibile percepire le differenze tra un tipo di vetro ed un altro tipo di vetro.

Questo limite non permette di apprezzare adeguatamente come la costante ricerca dell’industria produttrice di vetro piano sia in grado di assicurare invece al mercato prodotti sempre più performanti sia in termini di isolamento termico ed acustico, sia in termini di sicurezza, fino a rispondere molto positivamente anche ad applicazioni fino a qualche anno fa impensabili per un materiale come il vetro (vedasi il caso dell’impiego di elementi di vetro nella realizzazione di strutture portanti degli edifici).

Diventa, quindi, sempre più importante dare informazioni ed aggiornamenti a progettisti ed operatori sulle continue evoluzioni della tecnologia vetraria, ed in quest’ottica le presenti Linee Guida si propongono di rappresentare uno strumento completo ed agevole nelle scelte relative alle più frequenti applicazioni del vetro.

Infatti gli obiettivi di riduzione di consumi energetici nei nostri edifici e di miglioramento degli standard qualitativi dei materiali impiegati in edilizia richiedono spesso scelte molto semplici e nient’affatto costose, e tutte orientate ad aumentare ed a migliorare la qualità della vita. Basta conoscerle!

Dr. Gianni Scotti
Presidente dei Produttori di vetro per l’edilizia e dei Produttori di lana di vetro di ASSOVETRO

Avv. Filippo Bernocchi
Delegato ANCI Energia e Rifiuti

Roma, settembre 2015
La presente Linea Guida è stata realizzata con il contributo tecnico delle Aziende del settore della produzione Vetro Piano (Saint Gobain Glass, Pilkington Italia e Sangalli Vetro Manfredonia) e dei tecnici dei Comuni di Genova, Montevarchi e Poggio Mirteto, nonché con il supporto della Stazione Sperimentale del Vetro, i quali hanno messo a disposizione le proprie competenze ed esperienze.
SOMMARIO

PREFAZIONE ... 3
SOMMARIO ... 5
PREMESSA ... 8
INTRODUZIONE .. 9
DEFINIZIONI ... 10
CAPITOLO 1. SICUREZZA ... 11
 1.1 SICUREZZA NEGLI EDIFICI - NORMATIVA DI RIFERIMENTO, RESPONSABILITÀ E COMPITI .. 11
 1.2 IL VETRO E LA SICUREZZA .. 12
 1.3 I VETRI DI SICUREZZA ... 12
 1.3.1 Il vetro stratificato di sicurezza .. 13
 1.3.1.1 Il vetro stratificato acustico di sicurezza ... 13
 1.3.1.2 Il vetro stratificato di sicurezza resistente al fuoco ... 13
 1.3.2 Il vetro temprato di sicurezza .. 13
 1.4 LA NORMA UNI 7697:2015 ... 14
 1.4.1 Scopo e campo di applicazione .. 14
 1.4.2 Criteri di scelta delle lastre da impiegare .. 15
 1.4.2.1 Osservazioni sui Prospetti 1 e 2 della norma UNI 7697 15
 1.4.3 Indicazioni per l’edilizia scolastica .. 16
 1.5 COME RICONOSCERE UN VETRO DI SICUREZZA ... 16
CAPITOLO 2. RESISTENZA MECCANICA ... 17
 2.1 LE AZIONI E I CARICHI .. 18
 2.1.1 Carichi variabili .. 18
 2.1.1.1 Carichi verticali uniformemente distribuiti ... 18
 2.1.1.2 Carichi verticali concentrati .. 18
 2.1.1.3 Carichi orizzontali lineari .. 18
 2.1.2 Azioni del vento .. 18
 2.1.2.1 Pressione del vento ... 18
 2.1.2.2 Azione tangenziale del vento .. 19
 2.1.2.3 Particolari precauzioni progettuali ... 19
 2.1.3 Azioni della neve .. 19
 2.1.3.1 Carico neve .. 19
 2.1.3.2 Carico neve sulle coperture ... 20
 2.2 PRECAUZIONI PER I VETRI IN COPERTURA .. 20
CAPITOLO 3. PRESTAZIONI LUMINOSE ... 21
 3.1 COME VERIFICARE LE CARATTERISTICHE DI TRASMISSIONE LUMINOSA DELLA FORNITURA 21
CAPITOLO 4. PRESTAZIONI TERMICHE ... 22
4.1 LEGISLAZIONE IN MATERIA DI RENDIMENTO ENERGETICO DEGLI EDIFICI 22
4.2 TECNOLOGIE DISPONIBILI .. 22
4.3 RISCALDAMENTO ... 23
4.3.1 L’isolamento termico del vetro .. 25
4.3.2 Suggerimenti e controlli applicabili alle vetrate isolanti con coating .. 25
4.4 RAFFRESCAMENTO .. 26
4.4.1 Sistemi schermanti esterni o filtranti ... 26
4.4.2 Gli apporti solari attraverso il vetro .. 27
4.5 COME VERIFICARE LE CARATTERISTICHE ENERGETICHE DELLE VETRATE 27
CAPITOLO 5. ASSORBIMENTO ENERGETICO E STRESS TERMICO .. 28
5.1 FONDAMENTI DELLA SOLLECITAZIONE TERMICA ... 28
5.2 INDICAZIONI PER LA PROGETTAZIONE DELLAVETRATA .. 29
5.2.1 Indicazioni per il progettista .. 29
5.2.1.1 Dimensionamento della lastra in relazione ai carichi .. 29
5.2.1.2 Valutazione del carico termico .. 30
5.2.1.2.1 Radiazione solare: esposizione e intensità della radiazione solare incidente............................ 30
5.2.1.2.2 Inclinazione della facciata ... 30
5.2.1.2.3 Valore di assorbimento energetico da parte del vetro isolante, presenza di trattamenti superficiali (coating, smaltature, serigrafie, ecc.) ... 30
5.2.1.2.4 Rivestimenti (film, pellicole adesive, vernici, ecc.) .. 30
5.2.1.2.5 Variazione della temperatura esterna, ombre proiettate sul vetro (da frangisole, parti di edificio, ecc.) .. 30
5.2.1.2.6 Precauzioni per applicazioni in climi freddi .. 30
5.2.1.2.7 Impiego di vetrate isolanti triple .. 31
5.2.1.2.8 Tipo di telaio .. 31
5.2.1.2.9 Riscaldamento localizzato (radiatori, tubi radianti ad alta temperatura, ecc.), variazione della temperatura interna dell’abitazione (fancoils o surriscaldamenti localizzati), oggetti o strutture che trattengono o riflettono il calore sul vetro (tende, veneziane, ostruzioni retrostanti, ecc.) .. 31
5.2.1.2.10 Serramenti scorrevoli sovrappponibili senza adeguata aerazione .. 31
5.2.1.2.11 Precauzioni nel caso di carichi termici elevati – differenziali termici .. 31
CAPITOLO 6. ISOLAMENTO ACUSTICO .. 32
6.1 LE PRESTAZIONI ACUSTICHE .. 32
6.2 COME VERIFICARE LE CARATTERISTICHE ACUSTICHE DELLE VETRATE 33
CAPITOLO 7. RESISTENZA AL FUOCO ... 34
7.1 COME VERIFICARE LE CARATTERISTICHE DI RESISTENZA E REAZONE AL FUOCO DELLE VETRATE 34
CAPITOLO 8. MONTAGGIO .. 35
PREMESSA

Nella fase di progettazione dell’edificio, e dell’involucro edile in particolare, il progettista è chiamato a rispondere alle aspettative ed alle esigenze dell’utente e del committente, adottando e privilegiando anche scelte funzionali, dimensionali ed estetiche pienamente soddisfacenti.

Le principali questioni che il progettista e il costruttore dovranno tener ben presenti, sono individuabili oltre che negli aspetti meramente dimensionali, anche nelle seguenti categorie:

a) **Strutturali e di sicurezza**

b) **Riduzione dei consumi energetici:**
 - riscaldamento;
 - condizionamento;
 - illuminazione;
 - ventilazione.

c) **Maggior comfort:**
 - termico;
 - periodo estivo,
 - periodo invernale,
 - visivo;
 - acustico.

b) **Aspetto estetico:**
 - trasparenza;
 - “relazione” con l’esterno;
 - ottimale uso della superficie.

e) **Altri criteri:**
 - durabilità;
 - manutenzione;
 - eco-compatibilità;
 - ecc.
INTRODUZIONE

La finalità della presente Linea Guida è quella di fornire ai progettisti, ai tecnici delle pubbliche amministrazioni, ai direttori dei lavori ed a tutti gli operatori interessati le principali indicazioni per la individuazione della tipologia di vetro da impiegare nella specifica applicazione.

Un qualunque elemento vetrario impiegato nelle superfici trasparenti degli edifici rappresenta un importante elemento dell’involucro edilizio, il quale svolge da sempre la prioritaria funzione di lasciare passare la luce naturale all’interno dell’edificio, mantenendo l’efficace funzione di chiusura.

Negli ultimi quindici anni la costante e crescente ricerca sviluppata dai produttori delle lastre di vetro di base, poi lavorato, trasformato opportunamente ed utilizzato nelle applicazioni in edilizia, ha permesso di accrescere la numerosità e la funzionalità delle caratteristiche prestazionali dello specifico elemento vetrario.

Lo sviluppo della tecnica del coating (rivestimento tramite depositi) e dei vari trattamenti superficiali, come pure la possibile scelta tra varie tipologie di vetri per l’ottenimento di vetrate doppie o triple dalle molteplici caratteristiche prestazionali, ha permesso di proporre ed assicurare al mercato, ai progettisti ed ai vari operatori interessati soluzioni sempre più aderenti alle crescenti esigenze, assicurando correttamente e puntualmente anche il rispetto delle disposizioni legislative.

Una moderna lastra di vetro mantiene, quindi, sempre le sue prerogative di trasparenza richieste, ma offre crescenti caratteristiche prestazionali non immediatamente visibili, sebbene intrinsecamente presenti.

Possiamo molto più semplicemente affermare che, con lo sviluppo della ricerca da parte dell’industria del settore, la lastra di vetro per le parti, trasparenti e non, degli edifici sta divenendo sempre più un vero e proprio “supporto-di-prestazioni”, non percepibili da una semplice valutazione visiva (la lastra conserva la sua naturale trasparenza), ma sicuramente presenti, proponibili e certificabili dall’industria di settore.

Questa importante particolarità e questa crescente offerta di prodotti, apparentemente tutti uguali ma assolutamente differenti tra loro e caratterizzati ciascuno da prestazioni ben precise e definite, non sempre sono note ai vari operatori, a partire dai progettisti, i quali potendo invece disporre delle conoscenze e dei dati relativi a questa ampia gamma di soluzioni sarebbero in grado di individuare ed adottare il tipo di vetro più idoneo alla specifica applicazione.

Per tale motivo e con questa finalità la presente Linea Guida, nata dalla collaborazione tra Assovetro ed Anci, intende fornire agli uffici tecnici dei comuni italiani, ai progettisti ed ai direttori dei lavori informazioni, dati ed elementi di contesto riguardanti i vari prodotti vetrari e le loro caratteristiche prestazionali per garantire le più corrette applicazioni.

Con la presente Linea Guida s’intendono fornire indicazioni pratiche circa le prestazioni e le applicazioni di lastre di vetro in relazione ai seguenti temi, a ciascuno dei quali è stata riservata una trattazione specifica sulla base delle esigenze emerse in sede progettuale:

- sicurezza;
- resistenza meccanica;
- prestazioni luminose;
- prestazioni termiche;
- assorbimento energetico e stress termico;
- isolamento acustico;
- resistenza al fuoco;
- montaggio;
- manutenzione;
- aspetti qualitativi.
DEFINIZIONI

- Coating: rivestimento superficiale applicato sulle lastre con funzioni di controllo energetico, nel documento chiamato anche deposito;
- Dichiarazione di Prestazione (DoP): Dichiarazione delle caratteristiche prestazionali, documento obbligatoriamente emesso dal produttore delle vetrate, ai sensi del Regolamento (UE) N. 305/2011;
- Intercalare: polimero plastico in fogli o resina, interposto tra le lastre per la produzione del vetro stratificato di sicurezza;
- NTC: Nuove Norme Tecniche delle Costruzioni, ai sensi del D.M. 14 gennaio 2008;
- Progettista: tecnico o gruppo di tecnici incaricati della progettazione dell’opera, così come definita dal D. Lgs. 163/2006 e dal D.P.R. 207/2010;
- Progettista del kit: tecnico incaricato della progettazione di uno specifico insieme di elementi (es. progetto del serramento);
- Progettista della vetrata: tecnico incaricato della progettazione riferita ad uno specifico prodotto (es. progetto di una vetrata per un’applicazione specifica);
- Lastra asimmetrica: lastra stratificata composta da due o più vetri di diverso spessore e/o tipologia disposti in modo non simmetrico;
- Vetrata isolante asimmetrica: vetrata isolante composta da lastre esterne di diverso spessore, tipologia e/o composizione.
CAPITOLO 1. SICUREZZA

1.1 SICUREZZA NEGLI EDIFICI - NORMATIVA DI RIFERIMENTO, RESPONSABILITÀ E COMPITI

In tema di sicurezza, le norme di riferimento cui tutti gli edifici (fra cui, ovviamente, anche quelli scolastici) devono essere conformi sono:

- il D. Lgs. 9 aprile 2008, n. 81 e s.m.i., che costituisce il Testo Unico della sicurezza sul lavoro;
- il Decreto del Ministero dell’Interno 26 agosto 1992, riguardante le norme di prevenzione incendi per l’edilizia scolastica;
- il Decreto del Ministero dello Sviluppo Economico del 22 gennaio 2008, n. 37, recante disposizioni in materia di attività di installazione degli impianti all’interno degli edifici, indipendentemente dalla destinazione d'uso.

Se si escludono gli appartamenti ERP, ovvero di edilizia residenziale pubblica - poco meno di 850’000 alloggi, gestiti da 107 Aziende variamente denominate, costituite dalle Regioni dopo lo scioglimento dell’I.A.C.P., gli oltre 40’000 edifici ad uso delle Scuole pubbliche costituiscono la parte prevalente dell’intero patrimonio edilizio destinato ai fini istituzionali di Comuni e Province.

La Legge 11 gennaio 1996, n. 23, che ha stabilito norme di carattere generale in materia di edilizia scolastica, ha attribuito le seguenti competenze per la fornitura degli edifici alle scuole statali:

- alle Province competono gli Istituti del secondo ciclo dell’istruzione (cioè la scuola secondaria di secondo grado e la formazione professionale);
- ai Comuni spetta invece fornire gli edifici per la scuola dell’infanzia e del primo ciclo dell’istruzione (cioè la scuola primaria e secondaria di primo grado).

La legge pone a carico degli stessi Enti – sia Province che Comuni - anche la manutenzione e l’arredamento delle scuole, nonché gli oneri relativi alle varie utenze (gas, elettricità, acqua, telefono), al riscaldamento e ai relativi impianti.

Dall’art. 18, comma 3, del D. Lgs. n. 81/2008, sono stati estesi agli edifici e ai locali assegnati in uso agli istituti di istruzione ed educazione di ogni ordine e grado gli obblighi previsti dal predetto Decreto per assicurare la sicurezza dei locali e degli edifici, obblighi che restano a carico dell’Amministrazione tenuta alla loro fornitura e manutenzione e che si intendono assolti, per quanto di competenza dei dirigenti e dei funzionari preposti agli uffici interessati, con la richiesta del loro adempimento all’Amministrazione competente che ne ha l’obbligo giuridico. Tale estensione ha origine nell’art. 1-bis del D.L. 23 ottobre 1996, n. 542, convertito dalla legge 23 dicembre 1996, n. 649.

Ne consegue che le principali responsabilità, per la mancata conformità alle normative di legge degli edifici scolastici, ricadono sui Comuni e sulle Province. Ciò significa, altresì, che i dirigenti scolastici (“datori di lavoro” a tutti gli effetti) sono chiamati a valutare le condizioni di sicurezza in cui si svolge l’attività scolastica e a definire le modalità di utilizzo degli immobili e degli arredi garantendo la riduzione dei rischi connessi, nonché a gestire quanto loro affidato mantenendone la conformità e la funzionalità.
1.2 IL VETRO E LA SICUREZZA

La sicurezza può essere definita come la “consapevolezza che l'evoluzione di un sistema non produrrà stati indesiderati”. In termini più semplici, significa sapere che le nostre azioni e le conseguenze di determinati incidenti non provocheranno danni né a persone né a cose.

Attualmente il termine sicurezza e il concetto di incidente non sempre vengono posti in relazione. Dovrebbe essere invece ben chiaro che una delle cause principali che portano al verificarsi di un incidente dannoso è il mancato rispetto delle norme di sicurezza e che questo può (e deve) essere previsto e prevenuto adottando soluzioni costruttive adeguate.

La sicurezza - in generale - si ha in assenza di pericoli: un concetto difficilmente traducibile nella vita reale; il rispetto delle norme di sicurezza, però, rende più difficile il verificarsi sia di eventi dannosi che di incidenti e si traduce, sempre, in una migliore qualità della vita.

Il concetto di sicurezza deve essere quindi inteso nell’accezione più ampia del termine, includendo sia la sicurezza antinfortunio (volta a ridurre il rischio di lesioni) che la sicurezza intesa come protezione da atti vandalici e/o tentativi di effrazione.

1.3 I VETRI DI SICUREZZA

Si definiscono vetri di sicurezza le tipologie di vetro le cui caratteristiche di rottura sono state modificate tramite lavorazioni di trasformazione, conferendo loro le “modalità di rottura sicura”.

Secondo le normative vigenti, la modalità di rottura può essere considerata sicura se la lastra di vetro si rompe in modo tale da ridurre al minimo il rischio di danni a persone o cose, cioè da non poter provocare lesioni significative.

Sulla base del comportamento alla rottura sono considerati vetri di sicurezza i vetri stratificati di sicurezza e i vetri temprati di sicurezza che corrispondono ai requisiti delle rispettive norme di prodotto.

Non possono essere considerati vetri di sicurezza:
- il vetro ricotto, cioè il vetro ordinario;
- il vetro indurito, termicamente o chimicamente, la cui rottura avviene in pezzi grossolani e in grado di provocare ferite.

Il vetro armato pur non rispondendo pienamente alle “modalità di rottura sicura”, può essere utilizzato in limitate applicazioni in edifici storici, nel caso di sostituzioni di copertura, per la sua capacità di offrire una resistenza residua post-rottura, oltre ad una certa capacità di ritenzione dei frammenti.

I prodotti vetrari immessi sul mercato devono essere corredata di marcatura CE e le loro caratteristiche prestazionali e di durabilità sono garantite dal produttore, che si assume la responsabilità della loro conformità alla Dichiarazione di Prestazione. Se poi sono marchiati anche CSICERT UNI, ciò significa che sono stati sottoposti ad un controllo ulteriore, più efficace e severo, e che in tale procedura interviene anche un ente esterno sulla base di Regolamenti CSI specifici di prodotto. Vedi Capitolo 10.
1.3.1 Il vetro stratificato di sicurezza

Si definisce vetro stratificato (UNI EN 12543-1) il vetro composto da almeno due lastre, tenute solidali da uno o più fogli di intercalare\(^1\) (materiale plastico), generalmente PVB (polivinilbutirrale).

Variando il numero delle lastre e degli strati di materiale plastico, si ottengono prodotti diversi in grado di coprire una vasta gamma di livelli di sicurezza e protezione.

Nel vetro stratificato di sicurezza (UNI EN 12543-2), in caso di rottura, l’intercalare serve a trattenere i frammenti di vetro e offrire resistenza residua, limitando le dimensioni dell’apertura e riducendo il rischio di ferite da taglio e perforazione, e, in particolari applicazioni, anche quello di caduta nel vuoto.

1.3.1.1 Il vetro stratificato acustico di sicurezza

Il vetro stratificato di sicurezza composto con intercalari plastici specifici risponde in modo ottimale anche alle prestazioni richieste in materia di isolamento acustico, come più nel dettaglio è illustrato nel Capitolo 6.

1.3.1.2 Il vetro stratificato di sicurezza resistente al fuoco

Talune composizioni di vetri stratificati di sicurezza hanno anche caratteristiche di resistenza al fuoco, come più nel dettaglio è illustrato nel Capitolo 7.

1.3.2 Il vetro temprato di sicurezza

Si definisce vetro temprato di sicurezza la lastra sottoposta ad uno specifico trattamento termico che ne aumenta le caratteristiche di resistenza, meccanica e termica, e ne caratterizza la modalità di rottura.

Il vetro temprato di sicurezza, le cui caratteristiche di frammentazione sono definite dalla norma UNI EN 12150-1, si rompe in numerosi frammenti con bordi generalmente arrotondati e di ridotte dimensioni e deve essere marcato in modo permanente, recando il numero di questa norma.

\(^1\) Intercalare: Vedi Definizioni a pagina 10.
La eventuale presenza di tracce di solfuro di nichel, che non sono individuabili a occhio nudo, può generare la rottura delle lastre temperate termicamente. Tale rischio viene drasticamente ridotto sottoponendo i vetri temperati di sicurezza al trattamento HST (Heat Soak Test - UNI EN 14179-1 e -2).

In caso di vetro sottoposto ad HST, la Dichiarazione di Prestazione\(^2\) dovrà recare il numero di questa norma, numero che dovrà essere riportato in modo permanente anche sul vetro stesso.

Al paragrafo seguente sono esposti i casi in cui l’utilizzo di un prodotto temprato di sicurezza sottoposto a HST è obbligatorio.

1.4 LA NORMA UNI 7697:2015

La norma UNI 7697:2015 - Criteri di sicurezza nelle applicazioni vetrarie, la cui ultima versione, a seguito di un puntuale processo di revisione e aggiornamento, è in vigore dal febbraio 2015, stabilisce i criteri di scelta dei vetri in funzione della destinazione d’uso, al fine di garantire i requisiti minimi di sicurezza, indicando le tipologie ammesse nelle varie applicazioni e costituendo un riferimento nei rapporti tra i vari soggetti ed operatori coinvolti.

La norma UNI 7697 deve essere considerata uno strumento di lavoro quotidiano da tutti gli operatori del settore (progettisti dell’opera, dei kit e dei relativi componenti\(^3\), costruttori, serramentisti, vetrai e rivenditori).

In essa sono infatti contenuti tutti i riferimenti agli standard prestazionali in vigore relativamente alle applicazioni vetrarie considerate; inoltre, nella prima parte, contiene una lista di definizioni relative a tutti quei tipi di vetro che, in appropriati spessori e dimensioni, possono offrire garanzie di sicurezza sufficienti nelle situazioni d’uso previste.

Fermo restando il rimando al testo della norma, che dovrà essere esaminata nella sua interezza considerata l’articolazione delle disposizioni in essa contenute, riportiamo di seguito alcune indicazioni utili alla consultazione delle presenti Linee Guida.

1.4.1 Scopo e campo di applicazione

La norma non si applica alle vetrate coperte da norme specifiche, come ad esempio i vetri montati su mobili o quelli installati su mezzi di trasporto terrestri e navali.

La norma esamina le vetrate in funzione del contesto in cui sono collocate, della funzione, del posizionamento, del tipo di montaggio e della possibilità di contatto con le persone; in funzione di tutto questo, prescrive il tipo ed il livello prestazionale delle lastre utilizzabili.

Al fine di orientare verso la scelta del vetro di sicurezza più idoneo, la norma considera diversi tipi di azioni/sollecitazioni che si presume possano agire sulla vettrata installata.

Tra queste, particolare attenzione verrà rivolta agli urti dovuti all’impatto di una persona (UNI EN 12600) e agli urti di pietre, colpi di mazza e/o di ascia, dovuti ad atti vandalici o tentativi di effrazione (UNI EN 356).

La prescrizione normativa è fatta tenendo conto delle sollecitazioni prevedibili e dei rischi che eventuali rotture possono provocare alla comunità, a persone e a cose.

\(^2\) Dichiarazione di Prestazione (DoP): Vedi Definizioni a pagina 10.

\(^3\) Progettista, Progettista del kit: Vedi Definizioni a pagina 10.
1.4.2 Criteri di scelta delle lastre da impiegare

La norma individua i casi in cui si presentano potenziali pericoli, per i quali prescrive l’uso di specifiche tipologie di vetri di sicurezza indicandone la classe prestazionale minima. In tutti i casi che presentano un potenziale pericolo si dovranno installare sempre vetri di sicurezza, sulla base delle indicazioni riportate.

Nel caso in cui l’urto sulla vetrata isolante sia prevedibile solo da un lato, il vetro di sicurezza deve essere installato sul lato del possibile impatto durante l’impiego; in fase progettuale, comunque, dovranno essere tenute in considerazione le conseguenze della rottura di entrambe le lastre e su questa base decidere quale vetro utilizzare per ogni lato.

Va anche evitato il problema della caduta di frammenti che si verifica in caso di rottura del vetro temprato termicamente; la norma, in funzione del tipo di montaggio e della posizione delle lastre, indica quando un prodotto temprato debba essere sottoposto al trattamento HST.

N.B. Qualora si utilizzino vetrate di composizione asimmetrica⁴, per spessore o tipologia di lastra, al fine di assicurare la prestazione dichiarata occorre rispettare il verso a cui la vetrata è stata sottoposta a prova, indicato dal produttore.

1.4.2.1 Osservazioni sui Prospetti 1 e 2 della norma UNI 7697

La norma si avvale di due Prospetti per indicare quali tipologie di vetro siano ammissibili nelle diverse applicazioni elencate.

Nei Prospetti è indicato anche quando la funzione delle lastre debba essere assicurata anche in caso di rottura del vetro; in questi casi viene prescritta una particolare composizione del vetro stratificato di sicurezza. Per i casi di particolare criticità è consigliata la verifica in condizioni reali.

Per le coperture e per le superfici calpestabili, è necessario prestare attenzione ai valori di scivolamento, nel rispetto del punto 8.2.2 del D.M. n. 236 del 14-06-1989, fornendo vetri con caratteristica antisdrucciolo (valori maggiori di 0.40, sia in condizioni asciutte che bagnate).

Per i prodotti ad elevato assorbimento energetico, con la finalità di ridurre il rischio di rottura per differenziale termico a causa delle condizioni ambientali o di montaggio, si suggerisce di verificare se sia opportuno utilizzare vetri di sicurezza temprati o stratificati temprati.

Come è facilmente riscontrabile dalla lettura della norma, essa, discriminando le caratteristiche di ciascuna delle lastre componenti la vetrata, pone un’elevata attenzione su alcune applicazioni vetrarie per specifiche destinazioni d’uso, in modo particolare i luoghi pubblici o di pubblica utilità, come ad esempio scuole, asili e ospedali ecc., e relaziona tali caratteristiche all’altezza dal piano di calpestio e/o alla tipologia applicativa.

Nella vetrata isolante, che costituisce il prodotto vetriario standard poiché è in grado di soddisfare le prestazioni energetiche e luminose richieste dalla normativa, la lastra interna deve essere di sicurezza per rispondere ai requisiti introdotti dalla UNI 7697.

Tra le principali modifiche introdotte nell’edizione 2015 della norma, evidenziamo quella relativa ai vetri temprati HST posti in facciata ad altezza maggiore di 4 m dal piano di calpestio.

L’adozione dei tipi di lastra da impiegare, prescritti nei Prospetti 1 e 2 della norma, è vincolante, a meno che il rischio di danno connesso a quella particolare applicazione sia stato eliminato con provvedimenti o protezioni adeguati.

⁴ Vetrata isolante asimmetrica: Vedi Definizioni a pagina 10.
Per una corretta progettazione delle vetrate, si devono considerare le condizioni di posa, la tipologia di applicazione e la destinazione d’uso, le caratteristiche geometriche, il tipo di fissaggio e i carichi agenti.

È bene inoltre ricordare che la scelta del vetro di sicurezza e la relativa applicazione non esimono il progettista del kit o del vetro dall’eseguirne il dimensionamento.

Il calcolo dello spessore della vetrata, la cui tipologia di vetro è stabilita in accordo con le indicazioni fornite dalla norma UNI 7697, infatti, rappresenta parte integrante della valutazione e va eseguito secondo quanto prescritto dalle norme di riferimento vigenti (UNI/TR 11463 e prEN 16612:2013).

Non si esclude anche il ricorso a verifica sperimentale; in questo caso la norma raccomanda di rivolgersi a laboratori notificati ai sensi del Regolamento (UE) N. 305/2011 (come ad esempio la Stazione Sperimentale del Vetro, www.spevetro.it), in grado di garantire che le prove riproducano con sufficiente approssimazione le azioni che si vogliono simulare e per le quali si intende dimensionare il vetro.

1.4.3 Indicazioni per l’edilizia scolastica

Il Ministero dell’Istruzione dell’Università e della Ricerca (MIUR) nell’aprile 2013 ha emanato proprie Linee Guida, che escludono l’utilizzo di vetri temprati, precisando che gli infissi devono essere realizzati, sia all’interno che all’esterno, con vetri stratificati di sicurezza 2(B)2. Tali Linee Guida ministeriali prescrivono per le superfici vetrate la classe 1(B)1 fino a 90 cm di altezza da terra.

Al riguardo di queste applicazioni, nel Prospetto 2 della 7697:2015 sono indicate anche le tipologie e le prestazioni minime dei vetri per serramenti, esterni ed interni, e delle pareti divisorie installati in asili, scuole di ogni ordine e grado e relative pertinenze, in perfetta sintonia con le Linee Guida del MIUR. Tutte le lastre, monolitiche o assemblate in vetrata isolante, debbono essere costituite da vetri stratificati di sicurezza di classe 2(B)2. Se sussiste il rischio di caduta nel vuoto nonché nei casi di superfici vetrate con lato inferiore ad altezza non superiore a 100 cm da terra, la tipologia è confermata ma la classe prestazionale è innalzata a 1(B)1; si ritiene utile sottolineare che le indicazioni della norma UNI 7697 (100 cm) sono più cautelative.

1.5 COME RICONOSSERE UN VETRO DI SICUREZZA

Il vetro deve essere fornito corredato di marcatura CE e deve essere resa disponibile la Dichiarazione di Prestazione (DoP, vedi Capitolo 11) che ne specifica le caratteristiche prestazionali.

All’interno dell’Appendice D sono presentati alcuni esempi di tipologie di elementi vetrari impiegati in edilizia, corredati dai valori prestazionali più significativi, tra cui le caratteristiche di sicurezza.
CAPITOLO 2. RESISTENZA MECCANICA

Il vetro è un solido amorfo che, per la sua composizione fisico chimica, è caratterizzato da un comportamento elastico fino al raggiungimento della rottura. A differenza dei materiali comunemente utilizzati nel settore delle costruzioni, il vetro non è in grado di attuare una ridistribuzione plastica delle tensioni; ne deriva che il collasso del vetro avviene prevalentemente a partire dai punti più sollecitati, o dove siano presenti microcricche o difetti, quali, ad esempio, potrebbero essere bordi e spigoli. Il suo comportamento fragile ne condiziona le modalità di utilizzo, per le quali è necessaria una piena conoscenza dei parametri meccanici e termici che lo caratterizzano: nella tabella di seguito riportata sono richiamati i principali parametri di interesse.

Tabella 1 [Fonte: UNI EN 572-1]

<table>
<thead>
<tr>
<th>Proprietà</th>
<th>Simbolo</th>
<th>Unità di misura</th>
<th>Valore</th>
</tr>
</thead>
<tbody>
<tr>
<td>Densità (a 18°C)</td>
<td>ρ</td>
<td>[kg/m3]</td>
<td>2500</td>
</tr>
<tr>
<td>Durezza (Knoop)</td>
<td>HK$_{0,1/20}$</td>
<td>Gpa</td>
<td>6</td>
</tr>
<tr>
<td>Modulo di Young (modulo di elasticità)</td>
<td>E</td>
<td>[MPa]</td>
<td>70000</td>
</tr>
<tr>
<td>Coefficiente di Poisson</td>
<td>μ</td>
<td>[-]</td>
<td>0.2</td>
</tr>
<tr>
<td>Resistenza a flessione caratteristica</td>
<td>f_{ck}</td>
<td>[MPa]</td>
<td>45</td>
</tr>
<tr>
<td>Capacità termica specifica</td>
<td>C</td>
<td>[J/(kg K)]</td>
<td>720</td>
</tr>
<tr>
<td>Coefficiente medio di espansione lineare tra 20° e 300° C</td>
<td>α</td>
<td>[1/ K]</td>
<td>9x10$^{-6}$</td>
</tr>
<tr>
<td>Resistenza contro il differenziale di temperatura e la variazione improvvisa di temperatura</td>
<td></td>
<td>[K]</td>
<td>40$^{(1)}$</td>
</tr>
<tr>
<td>Conduttività termica</td>
<td>λ</td>
<td>[W/(m K)]</td>
<td>1</td>
</tr>
<tr>
<td>Indice di rifrazione medio alle radiazioni visibili (da 380 nm a 780 nm)</td>
<td>N</td>
<td>[-]</td>
<td>1.5</td>
</tr>
<tr>
<td>Emissività (corretta)</td>
<td>ε</td>
<td>[-]</td>
<td>0.837</td>
</tr>
</tbody>
</table>

$^{(1)}$ Valore generalmente accettato che è influenzato dalla qualità del bordo e dal tipo di vetro

In considerazione del ritiro, senza sostituzione, della norma UNI 7143:1972 obsoleta e del tutto inadeguata, e in attesa della norma europea EN 16612, indicazioni procedurali per il dimensionamento degli spessori delle lastre in vetro con funzione di tamponamento sono fornite dal Rapporto Tecnico UNI/TR 11463, che, per la sua natura, non può essere considerato tra i riferimenti tecnici di cui al cap. 12 del D.M. 14 gennaio 2008 “Norme Tecniche per le costruzioni”, di seguito NTC5, a causa dei limiti metodologici imposti dai regolamenti CEN, ma che ha preso a riferimento metodi e principi della normativa europea medesima.

I succitati UNI/TR 11463 e EN 16612 condividono lo stesso approccio, non più basato sul metodo deterministico delle tensioni ammissibili, ma sul metodo semiprobabilistico agli stati limite.

Per le applicationi strutturali del vetro soggetto a carichi (travi, solai, colonne, coperture, ecc.) si ricorda l’esistenza delle Istruzioni CNR DT210 del dicembre 2013.

5 NTC: Vedi Definizioni a pagina 10.
2.1 LE AZIONI E I CARICHI

In accordo col Capitolo 3 delle Norme Tecniche delle Costruzioni, relativo alle Opere Civili e Industriali, per gli elementi in vetro oltre a considerare il peso proprio e i carichi variabili legati alla destinazione d’uso dell’opera, bisogna valutare le azioni del vento e della neve su essi insistenti.

2.1.1 Carichi variabili

Comprendono i carichi legati alla destinazione d’uso dell’opera e sono riportati nella Tab. 3.1.II – Valori dei carichi d’esercizio per le diverse categorie di edifici del Capitolo 3 delle NTC.

2.1.1.1 Carichi verticali uniformemente distribuiti

Sono indicati con qk [kN/m^2] all’interno delle NTC.

2.1.1.2 Carichi verticali concentrati

Indicati con Qk [kN] all’interno delle NTC, sono da utilizzare per verifiche locali distinte e non vanno sovrapposti ai corrispondenti carichi verticali ripartiti.

2.1.1.3 Carichi orizzontali lineari

Indicati con Hk [kN/m] all’interno delle NTC, devono essere utilizzati per verifiche locali e non si sommano ai carichi utilizzati nelle verifiche dell’edificio nel suo insieme e devono essere applicati:

- alla quota di 1.20 m dal piano di calpestio: per pareti;
- alla quota del bordo superiore: per parapetti o mancorrenti.

2.1.2 Azioni del vento

La velocità di riferimento \(v_b \) è il valore caratteristico della velocità del vento a 10 m dal suolo su un terreno di categoria di esposizione II, mediata su 10 minuti e riferita ad un periodo di ritorno di 50 anni. Da essa dipendono la pressione sulle facce dell’edificio perpendicolari alla direzione del vento e l’azione tangenziale del vento, esercitata sulle facce, invece, ad esso parallele.

\[
\begin{align*}
v_b &= v_{b,0} \text{ per } a_s \leq a_0 \\
v_b &= v_{b,0} + k_a (a_s - a_0) \text{ per } a_0 < a_s < 1500 \text{ m}
\end{align*}
\]

dove:

\(v_{b,0}, a_0, k_a \) sono parametri forniti all’interno delle NTC e legati alla regione in cui sorge la costruzione in esame;

\(a_s \) è l’altitudine sul livello del mare (in m) del sito ove sorge la costruzione.

2.1.2.1 Pressione del vento

La velocità di riferimento è necessaria per poter procedere al calcolo della pressione del vento, data dall’espressione:

\[
p_f = q_b \times c_e \times c_p \times c_d
\]

dove:
qb è la pressione cinetica di riferimento, ed è proporzionale a vb;
c_e è il coefficiente di esposizione;
c_p è il coefficiente di forma (o coefficiente aerodinamico), funzione della tipologia e della geometria della costruzione e del suo orientamento rispetto alla direzione del vento. Il suo valore può essere ricavato da dati suffragati da opportuna documentazione o da prove sperimentali in galleria del vento;
c_d è il coefficiente dinamico con cui si tiene conto degli effetti riduttivi associati alla non contemporaneità delle massime pressioni locali e degli effetti amplificativi dovuti alle vibrazioni strutturali.

2.1.2.2 Azione tangenziale del vento
L’azione tangente per unità di superficie parallela alla direzione del vento è data dall’espressione:

\[p_f = q_b \times c_e \times c_f \]

dove:
qb , ce sono definiti nell’espressione precedente;
c_f è il coefficiente d’attrito, funzione della scabrezza della superficie sulla quale il vento esercita l’azione tangente. Il suo valore può essere ricavato da dati suffragati da opportuna documentazione o da prove sperimentali in galleria del vento o, in assenza di più precise valutazioni, dalla Circolare 617.

2.1.2.3 Particolari precauzioni progettuali
Ulteriori precauzioni progettuali, quali effetti torsionali, distacco di vortici e fenomeni di natura aerelasticità, sono oggetto di approfondimento all’interno delle NTC.

2.1.3 Azioni della neve
2.1.3.1 Carico neve
Il carico provocato dalla neve sulle coperture sarà valutato mediante la seguente espressione:

\[q_s = \mu_i \times q_{sk} \times C_E \times C_t \]

dove:
qs è il carico neve sulla copertura;
\(\mu_i \) è il coefficiente di forma della copertura, attraverso il quale si tiene anche conto delle combinazioni di carico di neve e vento ed eventualmente di fenomeni più complessi, quali effetti locali dovuti a sporgenze, neve aggettante rispetto il bordo o barriere paraneve;
q_{sk} è il valore caratteristico di riferimento del carico neve al suolo [kN/m²], per un periodo di ritorno di 50 anni;
C_E è il coefficiente di esposizione;
C_t è il coefficiente termico.
Si ipotizza che il carico agisca in direzione verticale e lo si riferisce alla proiezione orizzontale della superficie della copertura.
2.1.3.2 Carico neve sulle coperture
Devono essere considerate le due seguenti principali disposizioni di carico, da cui il suddetto coefficiente di forma della copertura μ_i:
- carico da neve depositata in assenza di vento;
- carico da neve depositata in presenza di vento.

2.2 PRECAUZIONI PER I VETRI IN COPERTURA

Per aumentare la resistenza agli impatti della grandine, si consiglia di utilizzare il vetro temprato per la lastra esterna.
CAPITOLO 3. PRESTAZIONI LUMINOSE

Il flusso luminoso che colpisce una vetrata si divide in 2 componenti:
- la quantità di luce visibile che attraversa il vetro;
- la quantità che viene riflessa dalla vetrata.

Se rapportate al flusso luminoso incidente, da tali quantità si ottengono rispettivamente i rapporti di:
 a. trasmissione luminosa;
 b. riflessione luminosa;

Essi dipendono dallo spessore e dalla colorazione della vetrata, nonché, eventualmente, dalle sostanze che costituiscono i depositi superficiali.

La trasmissione luminosa (TL) è, quindi, una caratteristica specifica del materiale, funzionale ad ottenere l’opportuno livello di comfort visivo all’interno degli edifici e deve essere quindi prevista nelle caratteristiche prestazionali di progetto.

E’ un valore fornito dal produttore ed è misurato in conformità alla norma EN 410.

La corretta illuminazione, disciplinata dalle disposizioni sanitarie per gli ambienti di vita e di lavoro, è in grado di garantire comfort ed economiche energetiche e rappresenta, in genere, un parametro critico quando si intendano realizzare ambienti pubblici, uffici, scuole, negozi, ecc.

I produttori sono in grado di garantire anche altri parametri, anch’essi molto importanti per una corretta progettazione, quali i valori di riflessione interna ed esterna, l’indice di fedeltà del colore, ecc.

3.1 COME VERIFICARE LE CARATTERISTICHE DI TRASMISSIONE LUMINOSA DELLA FORNITURA

Il vetro deve essere fornito corredato di marcatura CE e deve essere resa disponibile la Dichiarazione di Prestazione (DoP, vedi Capitolo 11) che ne specifica le caratteristiche prestazionali.
CAPITOLO 4. PRESTAZIONI TERMICHE

4.1 LEGISLAZIONE IN MATERIA DI RENDIMENTO ENERGETICO DEGLI EDIFICI

La Direttiva europea 2010/31/UE prescrive che ogni Paese disciplini i consumi e il rendimento energetico degli edifici affinché tutti gli edifici di nuova costruzione siano a energia quasi zero entro il 2021.

Alla data di edizione del presente documento, la legislazione che in Italia regolamenta le prestazioni energetiche degli edifici, in ottemperanza a quanto indicato nella suddetta Direttiva, è rappresentata dal D. Lgs. 19 agosto 2005 n. 192 e s.m.i. che, ora, attraverso tre decreti attuativi (G.U. n.162 del 15/07/2015), in capo al Ministero dello Sviluppo Economico, disciplina in maniera completa il quadro delle prestazioni energetiche in edilizia. I tre decreti, che risultano tutti vigenti alla data del 1°ottobre 2015, trattano:

a) la metodologia per il calcolo delle prestazioni energetiche integrate degli edifici, i requisiti minimi in materia di prestazioni energetiche e i criteri generali per la certificazione energetica degli edifici;

b) gli schemi e le modalità di riferimento per la compilazione della relazione tecnica di progetto, in funzione delle diverse tipologie di lavori;

c) le Linee guida per l’attestazione della prestazione energetica degli edifici, che riportano una classificazione degli edifici, il format di Attestato di Prestazione Energetica (APE) e il format di Attestato di Qualificazione energetica (AQE). Relativamente alla figura del certificatore energetico, è in vigore il D. Lgs. 30 maggio 2008, n. 115 e s.m.i..

Un altro riferimento normativo importante, infine, è rappresentato dal D.P.R. 26 agosto 1993 n. 412 (G.U. n. 96 del 14/10/1993 decreto attuativo della Legge 10/91) che, tra l’altro, reca in allegato la Tabella dei gradi/giorno dei Comuni italiani raggruppati per Regione e Provincia.

4.2 TECNOLOGIE DISPONIBILI

La condizione essenziale perché le vetrate possano garantire l’isolamento termico degli edifici è che si impieghino vetrate isolanti con caratteristiche prestazionali adeguate. Gli sviluppi tecnologici hanno consentito di ottenere livelli di isolamento termico sempre più elevati, grazie all’applicazione sulle lastre di vetro di coating bassoemissivi e/o a controllo solare che sono applicati sulle lastre tramite sofisticati processi a caldo (pirolitico) o a freddo (magnetronico).

La trasmittanza termica complessiva del serramento è funzione della trasmittanza termica della vettrata U_g, della trasmittanza del telaio U_f e tiene anche conto delle caratteristiche del canalino distanziatore.

Il valore di trasmittanza termica U_g è fornito direttamente dal produttore, che lo calcola secondo la norma UNI EN 673, ed incide in modo rilevante sul bilancio energetico invernale dell’edificio. La gamma prestazionale dei vetri è molto ampia: il valore di trasmittanza termica è compreso tra $U_g = 5.8$ W/m²K per il vetro singolo e $U_g = 1.0$ W/m²K per vetrate isolanti a singola intercapedine ad alte prestazioni, quale il 4-16-4 bassoemissivo con argon. Vetrate isolanti a doppia intercapedine (tripli vetri) raggiungono valori di trasmittanza termica fino a 0.5 W/m²K.
La tecnologia dei depositi sulle superfici delle lastre permette anche di filtrare la radiazione solare, riducendo il surriscaldamento degli ambienti e facendo risparmiare l’energia per il raffrescamento.

Le vetrate composte da vetro chiaro semplice sono quasi trasparenti rispetto alla radiazione solare. Depositii superficiali del tipo a controllo solare sono invece in grado di schermare la radiazione infrarossa e, grazie ad essi, i prodotti vetrari svolgono anche la funzione di schermo e/o filtro solare.

Il parametro che esprime, in maniera adimensionale o in %, la quantità di calore che oltrepassa la vetrata è il fattore solare g, (talvolta chiamato anche FS); più basso è il fattore solare, minore è la quantità di energia solare che attraversa la vetrata, e da questo deriva un netto miglioramento nel bilancio energetico estivo dell’edificio. Il valore di questo parametro può variare moltissimo, oscillando da un minimo di 0.1 ad un massimo di 0.9 (10% - 90%).

A partire dal fattore solare g del vetro, e mediante la conoscenza delle caratteristiche prestazionali delle componenti opache che costituiscono il serramento, il progettista è in grado di calcolare il fattore solare totale g_{gl+sh} della finestra, necessario per le verifiche previste dal Decreto 2015 “Requisiti minimi degli edifici” e trattato al Paragrafo 4.4.1.

I prodotti vetrari immessi sul mercato devono essere corredati di marcatura CE e le loro caratteristiche prestazionali e di durabilità sono garantite dal produttore, che si assume la responsabilità della loro conformità alla Dichiarazione di Prestazione. Se poi sono marchiati anche CSICERT UNI, ciò significa che sono stati sottoposti ad un controllo ulteriore, più efficace e severo, e che in tale procedura interviene anche un ente esterno sulla base di Regolamenti CSI specifici di prodotto. Vedi Capitolo 10.

4.3 RISCALDAMENTO

Il decreto 26 giugno 2015 “Metodologie di calcolo delle Prestazioni energetiche e Definizione delle Prescrizioni e dei Requisiti minimi degli edifici”, di seguito Decreto 2015, di cui alla lettera a) del precedente Paragrafo 4.2, è in vigore dal 1° ottobre 2015 e tratta in particolare le seguenti tipologie di intervento:

1) edifici di nuova costruzione;
2) edifici esistenti sottoposti a ristrutturazioni importanti di primo livello, cioè interventi sull’involucro edilizio con un’incidenza superiore al 50% della superficie disperdente lorda complessiva dell’edificio, comprendenti anche la ristrutturazione dell’impianto termico;
3) edifici sottoposti a ristrutturazioni importanti di secondo livello, ossia con incidenza superiore al 25% della superficie disperdente lorda;
4) edifici oggetto di riqualificazione energetica.

Per gli edifici di nuova costruzione, per gli ampliamenti di edifici esistenti e per le ristrutturazioni importanti di primo livello, il Decreto 2015 non impone valori limite di trasmissanza per i serramenti e per le chiusure trasparenti, ma fissa un coefficiente globale di scambio termico H'_T riferito all’involucro, in funzione della zona climatica e del rapporto S/V, cui concorrono tutti gli elementi che compongono l’involucro. Tale coefficiente, i cui valori sono riportati nella seguente Tabella 2, deve essere rispettato anche per i casi di ristrutturazioni importanti di secondo livello, limitatamente alle sole parti dell’involucro (parete/copertura) interessate dai lavori, fatte salve le verifiche dei valori limite di trasmissanza.
Per ogni edificio di nuova costruzione o soggetto a ristrutturazione importante di primo livello il Decreto 2015 impone di confrontare la prestazione energetica di tale edificio, in termini di riscaldamento, raffrescamento e globale, con i corrispondenti valori prestazionali di un edificio di riferimento, ossia di un edificio identico in termini di geometria, orientamento, ubicazione, destinazione d’uso e situazione al contorno, nel quale gli elementi costruttivi abbiano le caratteristiche energetiche indicate nelle Tabelle dell’Appendice A del Decreto 2015. Qui per brevità si sceglie di riportare, tra i parametri che caratterizzano l’edificio di riferimento, solo quelli riferibili ai componenti finestrati, ossia il fattore solare (vedi Paragrafo 4.4.1) e la trasmittanza termica, rimandando all’APPENDICE C per la trattazione completa dei parametri che caratterizzano l’edificio di riferimento.

I valori di trasmittanza termica U delle chiusure trasparenti (componenti finestrati), comprensivi degli infissi, dell’edificio di riferimento, sono dunque riportati nella seguente Tabella 3.

Il Decreto 2015, come visibile dalla Tabella 3, stabilisce limiti prestazionali per i due differenti periodi di applicazione:

- **primo periodo**: dal 1/10/2015 al 31/12/2018 per gli edifici pubblici e ad uso pubblico e dal 1/10/2015 al 31/12/2020 per tutti gli altri edifici;
- **secondo periodo**: dal 1/1/2019 per gli edifici pubblici e ad uso pubblico e dal 1/1/2021 per tutti gli altri edifici.
Nei casi di ristrutturazione importante di secondo livello e di riqualificazione energetica e per tutte le categorie di edifici, ad eccezione della categoria E.8 (edifici adibiti ad attività industriali ed artigianali e assimilabili), il Decreto 2015 stabilisce che il valore massimo della trasmittanza termica U delle chiusure trasparenti nel suo complesso, compresive di vetro e infissi, nonché dei ponti termici all’interno delle strutture oggetto di riqualificazione, debba rispettare la seguente Tabella 4.

Tabella 4 - Valori limite della trasmittanza termica U del serramento per i casi di ristrutturazione energetica di secondo livello e di riqualificazione energetica

<table>
<thead>
<tr>
<th>ZONA CLIMATICA</th>
<th>TRASMITTANZA DEL SERRAMENTO DAL 1° LUGLIO 2015 U (W/m²K)</th>
<th>TRASMITTANZA DEL SERRAMENTO DAL 1° GENNAIO 2021 U (W/m²K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A e B</td>
<td>3.2</td>
<td>3.0</td>
</tr>
<tr>
<td>C</td>
<td>2.4</td>
<td>2.0</td>
</tr>
<tr>
<td>D</td>
<td>2.1</td>
<td>1.8</td>
</tr>
<tr>
<td>E</td>
<td>1.9</td>
<td>1.4</td>
</tr>
<tr>
<td>F</td>
<td>1.7</td>
<td>1.0</td>
</tr>
</tbody>
</table>

N.B. - È opportuno verificare l’esistenza di limiti prestazionali più restrittivi fissati da eventuali normative locali.

In caso di interventi di riqualificazione energetica dell’involucro opaco con isolamento termico dall’interno o in intercapedine, indipendentemente dall’entità della superficie coinvolta, i valori delle trasmittanze, tra cui anche quella del serramento, sono incrementati del 30%.

Come anticipato, inoltre, nei casi di ristrutturazione importante di secondo livello è necessario verificare anche il rispetto dei valori del coefficiente H'_T, i cui valori sono riportati in Tabella 2.

4.3.1 L’isolamento termico del vetro

Il valore di trasmittanza termica U, proprio di ciascun tipo di prodotto vetrario, disciplinato dalla EN 673, è il valore, fornito direttamente dal produttore, che definisce il livello di isolamento termico del vetro e ne indica l’efficacia.

Le prestazioni di termoisolamento sono determinate dalla composizione e dalle caratteristiche delle vetrate isolanti (disciplinate dalle norme EN 1279, 1-6).

I vetri bassoemissivi assemblati in vetrata isolante garantiscono, di fatto, prestazioni di isolamento termico sei volte più elevate di un vetro singolo, con evidente abbattimento dei costi di riscaldamento e delle emissioni di CO$_2$ nell’ambiente.

Gli effetti sono positivi su tutto il territorio italiano, sebbene il parametro diventi, chiaramente, critico ed economicamente sempre più motivante passando dalla zona A (estremo sud) alle zone più fredde.

4.3.2 Suggerimenti e controlli applicabili alle vetrate isolanti con coating6

I coating hanno raggiunto un elevato livello di trasparenza e neutralità, rendendo il prodotto finito simile ad una comune vetrata isolante (senza coating).

Per tale ragione non è sempre possibile verificare “ad occhio nudo” se la vetrata isolante fornita sia effettivamente dotata di deposito.

6 Coating: Vedi Definizioni a pagina 10.
Di seguito si forniscono alcuni suggerimenti pratici per verificare il prodotto finito installato:

- in primo luogo è sempre bene rivolgersi a fornitori (vetreria/serramentista) affidabili e di comprovata esperienza;
- nessun vetro attualmente commercializzato può garantire in versione monolitica valori U_g inferiori a $3.4 \text{ W/m}^2\text{ K}$. Per ottenere valori U_g inferiori è sempre necessario ricorrere a vetrate isolanti;
- il diverso posizionamento del deposito sulla lastra (esterna o interna - faccia 2 o faccia 3) delle vetrate isolanti, può far variare l’aspetto cromatico e prestazionale. E’ quindi importante che il posizionamento del coating si mantenga uniforme sull’intera facciata dell’edificio, così da evitare effetti indesiderati di disomogeneità dell’aspetto;
- la presenza di un coating può essere facilmente rilevata anche con strumenti specifici, senza danneggiare le vetrate;
- per rilevare il coating in modo “pratico” si può ricorrere ad un semplice accendino, ponendolo in prossimità della vetrata isolante: le quattro superfici della vetrata isolante (due per ogni lastra) rifletteranno quattro immagini della fiammella dell’accendino; se tali immagini sono di colore identico non ci sono depositi, poiché la presenza dello stesso modifica in maniera distinguibile il colore di una delle quattro fiammelle riflesse;
- in caso di grandi commesse o di situazioni delicate, si consiglia di prelevare una vetrata isolante da un qualunque lotto di fornitura e di inviarla ad un laboratorio notificato ai sensi del Regolamento (UE) N. 305/2011 (quale, per esempio, la Stazione Sperimentale del Vetro) per verificarne la conformità a quanto richiesto dal committente (spessore vetri, presenza coating, riempimento gas, ecc.).

4.4 RAFFRESCAMENTO

4.4.1 Sistemi schermanti esterni o filtranti

Per la trasmissione di energia solare totale della finestra per componenti finestrati, il Decreto 2015 utilizza il fattore di trasmissione globale di energia solare g_{gl+sh} che tiene conto sia del ruolo del vetro, sia di eventuali schermature mobili applicate in modo solidale con l’involucro edilizio e non liberamente montabili e smontabili dall’utente [Fonte: UNI/TS 11300-1].

Edifici di nuova costruzione o soggetti a ristrutturazioni importanti di primo livello

Bisogna considerare l’area solare estiva $A_{sol,est}$ che tiene conto non solo del vetro e delle schermature, ma anche dell’ombreggiatura offerta da ostruzioni esterne ed aggetti, orizzontali e verticali, nonché della latitudine in cui è inserito l’edificio in esame. Il Decreto 2015 impone infatti, che il rapporto tra l’area solare estiva e l’area della superficie utile $A_{sol,est}/A_{sup utile}$ sia inferiore ai valori riportati nella seguente Tabella 5 (vedi Appendice A, Paragrafo 2.2).

Tabella 5 – Valore massimo ammissibile del rapporto tra area solare equivalente estiva dei componenti finestrati e l’area della superficie utile $A_{sol,est}/A_{sup utile}$

<table>
<thead>
<tr>
<th>Categoria dell’edificio</th>
<th>Tutte le zone climatiche</th>
</tr>
</thead>
<tbody>
<tr>
<td>Categoria E.1 fatta eccezione per collegi, conventi, case di pena, caserme nonché per la categoria E.1(3)</td>
<td>≤ 0.030</td>
</tr>
<tr>
<td>Tutti gli altri edifici</td>
<td>≤ 0.040</td>
</tr>
</tbody>
</table>
Edificio di Riferimento

Come anticipato, i parametri riferibili ai vetri che caratterizzano il fabbricato dell’edificio di riferimento, sono:

- la trasmittanza termica U delle chiusure trasparenti, esplicitata al Paragrafo 4.3;
- il fattore di trasmissione globale di energia solare g_{gl+sh} che, per le chiusure tecniche trasparenti verso l’esterno con orientamento da Est a Ovest, passando per il Sud, indipendentemente dalla zona climatica, assume il valore $g_{gl+sh} = 0.35$. Con questo valore si dovrà verificare la prestazione termica utile per la climatizzazione estiva.

Edifici soggetti a ristrutturazioni importanti di secondo livello o a riqualificazione energetica

Il Decreto 2015 prescrive che, per le chiusure tecniche trasparenti verso l’esterno con orientamento da Est a Ovest, passando per il Sud, il valore del fattore di trasmissione globale di energia solare g_{gl+sh} debba essere inferiore, indipendentemente dalla zona climatica, a $g_{gl+sh} \leq 0.35$.

L’introduzione dei due parametri g_{gl+sh} e $A_{sol,est}$, necessari per la determinazione del comportamento in termini di controllo solare relativo allo specifico edificio, comporta inevitabilmente una partecipazione più diretta del progettista, sia per le superfici opache sia per le superfici trasparenti.

La completa definizione dei valori che determinano il comportamento solare dell’edificio (g_{gl+sh} e $A_{sol,est}$) richiede l’intervento del progettista, sia per le superfici opache sia per le superfici trasparenti.

Poiché vale la “clausola di cedevolezza”, il valore può essere più severo qualora vi sia una legge/regolamento regionale e/o comunale, avente validità nel territorio, che prescriva prestazioni superiori.

4.4.2 Gli apporti solari attraverso il vetro

Il fattore solare g, specifico di ciascun tipo di prodotto vetrario, viene fornito dai fabbricanti ed indica la percentuale di energia termica che entra attraverso il vetro, rispetto al totale di quella incidente.

Il fattore solare è un parametro determinante nella progettazione orientata al risparmio energetico, soprattutto quando gli ambienti presentano ampie superfici vetrate. Esso ha un’importanza molto rilevante nella determinazione del bilancio energetico complessivo dell’edificio, infatti gli apporti solari gratuiti riducono il fabbisogno energetico per il riscaldamento, ma possono essere controproducenti per il consumo estivo.

Come detto in precedenza, per ottenere un basso fattore solare g, si utilizzano vetri con deposito metallico o vetri colorati, ma questo può avere l’effetto collaterale di ridurre la trasmissione luminosa. Attraverso il valore del fattore solare del vetro, fornito dal vetrario all’interno della Dichiarazione di Prestazione (DoP), e conoscendo le caratteristiche prestazionali delle altre componenti opache che costituiscono il serramento, è possibile calcolare il fattore solare totale della chiusura trasparente g_{gl+sh}.

4.5 COME VERIFICARE LE CARATTERISTICHE ENERGETICHE DELLE VETRATE

Il vetro deve essere fornito corredato di marcatura CE e deve essere resa disponibile la Dichiarazione di Prestazione (DoP, vedi Capitolo 11) che ne specifica queste caratteristiche prestazionali.

All’interno dell’Appendice D sono presentati alcuni esempi di tipologie di elementi vetrari impiegati in edilizia, corredati dai valori prestazionali più significativi, tra cui le caratteristiche energetiche.
CAPITOLO 5. ASSORBIMENTO ENERGETICO E STRESS TERMICO

5.1 FONDAMENTI DELLA SOLLECITAZIONE TERMICA

Il vetro viene definito generalmente come un materiale fragile, la cui rottura avviene, senza segnali premonitori, al superamento dei suoi limiti caratteristici. Questo accade quando carichi che possono avere origine differente (meccanica, termica, ecc.) raggiungono un determinato valore critico. Spesso le sollecitazioni termiche sono di difficile quantificazione. Un riscaldamento omogeneo del vetro non rappresenta di regola alcun problema, ma la presenza di un carico termico non omogeneo genera tensioni tali che possono condurre a rottura.

Come la maggior parte dei materiali, anche il vetro è soggetto al fenomeno della dilatazione termica, che avviene, com’è noto, a seguito di una variazione di temperatura. Se accade che due zone della stessa lastra raggiungono temperature molto diverse tra loro, la zona a temperatura superiore tende a dilatarsi mentre l’altra, a temperatura inferiore, oppone resistenza alla dilatazione. Questo causa la genesi di sforzi di trazione nella parte più fredda della lastra che possono portare alla rottura.

Va detto che l’intensità delle sollecitazioni di natura termica può essere molto diversa a seconda non solo dello stato termico del componente, ovvero delle differenze di temperature tra varie zone della lastra di vetro, ma anche a seconda della tipologia e della geometria della vetrata (forma e dimensioni, spessore, presenza di intercalare o di rivestimenti, vetrata isolante, struttura di sostegno o di supporto, ecc.). Tutto ciò va visto in relazione anche ai fattori esterni ed allo stato tensionale conseguente; è infatti evidente che con le dimensioni e la tipologia della vetrata (vetro stratificato, vetro isolante, ecc.) cambiano non solo la conducibilità termica, l’emissività, l’assorbimento energetico, ecc., ma anche le caratteristiche di resistenza alle sollecitazioni. In generale si può dire che laddove si possono generare più elevati gradienti termici, maggiore è il rischio di arrivare alla rottura.

Per esempio, infatti, in una lastra normalmente intelaiata sul perimetro, la porzione di vetro esposta alla radiazione solare diretta assorbe calore e, di conseguenza, aumenta la sua temperatura, mentre la parte intelaiata resta ad una temperatura inferiore in quanto viene schermata.

Per prevenire questi effetti, le norme forniscono indicazioni circa la resistenza al differenziale di temperatura di ciascuna tipologia di vetro [UNI EN 572-1 per il vetro ricotto, UNI EN 1863-1 per il vetro indurito termicamente e UNI EN 12150-1 per i vetri temprati termicamente].

La frattura conseguente a sollecitazioni termiche è ben identificabile in quanto ha origine dal bordo del vetro e si genera ortogonalmente a questo (90° attraverso lo spessore e 90° rispetto alla direzione del bordo - vedi figura sottostante).

L’andamento della frattura può variare in funzione dell’intensità delle tensioni termiche; può fermarsi a poca distanza dal bordo, serpeggiare al confine tra zona calda e zona fredda o dirigersi verso il centro della lastra.
5.2 INDICAZIONI PER LA PROGETTAZIONE DELLA VETRATA

5.2.1 Indicazioni per il progettista

Nelle moderne finestre e facciate, il vetro rappresenta un elemento fondamentale, destinato a sopportare carichi di diverso tipo. In linea generale è sufficiente attenersi alle normative e alle disposizioni di legge attualmente vigenti in materia. La presenza di carichi aggiuntivi, determinati da particolari condizioni strutturali o applicative, richiede invece una maggiore attenzione e l’adozione di ulteriori misure e provvedimenti in fase sia di progettazione sia di utilizzo.

Come detto in precedenza, non è facile prevedere o stimare le sollecitazioni di natura termica in una vetrata, se non ricorrendo a sistemi complessi di calcolo. In termini del tutto generali è possibile affermare che le vetrate isolanti per loro stessa natura sono soggette a carichi termici superiori, correlati ai più elevati differenziali di temperatura tra lastra interna e lastra esterna.

5.2.1.1 Dimensionamento della lastra in relazione ai carichi

Scelto il tipo di vetro da impiegare ai fini della sicurezza (vedi UNI 7697), la dimensione della lastra ed il suo spessore devono essere adeguati alla situazione di carico presente secondo il rapporto tecnico UNI/TR 11463. Oltre a tenere conto dei tradizionali carico neve, carico vento e carichi climatici, è necessario prestare attenzione anche ad eventuali carichi termici. Carichi eccessivi, determinati ad esempio dalla mancata valutazione delle sollecitazioni termiche, possono comportare la rottura del vetro.
5.2.1.2 Valutazione del carico termico

5.2.1.2.1 Radiazione solare: esposizione e intensità della radiazione solare incidente
L’intensità della radiazione solare incidente dipende dalla posizione geografica dell’edificio (latitudine, altitudine, zona urbana o non), dall’orientamento della facciata (Nord, Sud, Est, Ovest), dalla stagione e dall’ora di esposizione, oltre che da altri fattori come la nuvolosità, l’inquinamento atmosferico, la riflessione del terreno o di altre strutture adiacenti.

5.2.1.2.2 Inclinazione della facciata
Tanto più la superficie vetrata risulta inclinata (fino all’orizzontale) e tanto più l’incidenza della radiazione solare su questa aumenta, maggiore è l’energia che viene accumulata nella vetrata stessa e di conseguenza la temperatura che questa raggiunge.

5.2.1.2.3 Valore di assorbimento energetico da parte del vetro isolante, presenza di trattamenti superficiali (coating, smaltature, serigrafie, ecc.)
Le sollecitazioni termiche tendono a crearsi in particolare nei vetri ad assorbimento energetico elevato, quali vetri colorati in massa o rivestiti con coating. L’utilizzo di vetro a basso assorbimento energetico, quale il vetro extrachiaro a basso contenuto di ferro, riduce i rischi di rotture per sollecitazioni di natura termica.

5.2.1.2.4 Rivestimenti (film, pellicole adesive, vernici, ecc.)
Il rivestimento dei vetri con pellicola adesiva (ma anche con vernici) può dare origine a sollecitazioni termiche, in particolare nel caso di colori scuri. La probabilità di rottura aumenta e di questo fatto occorre tenere conto in sede di progettazione.

5.2.1.2.5 Variazione della temperatura esterna, ombre proiettate sul vetro (da frangisole, parti di edificio, ecc.)
L’intensità e la variazione della radiazione dipendono dalla stagione e dall’ora di esposizione, oltre che da altri fattori, quali quelli meteorologici, strutture adiacenti, ecc. Al mattino, in presenza di temperature dell’aria esterna basse e di irraggiamento solare, accade che il bordo della vetrata, inserito nella scanalatura del telaio, rimanga ad una temperatura più bassa rispetto al centro della lastra irraggiata.

5.2.1.2.6 Precauzioni per applicazioni in climi freddi
In climi freddi è possibile che, durante la notte, avvengano rotture per sollecitazione termica nella lastra posizionata all’interno, a diretto contatto con l’ambiente riscaldato.

Le basse temperature esterne raffreddano i telai e di conseguenza il bordo del vetro, mentre la parte centrale del vetro mantiene una temperatura più calda.

Questo rischio può essere limitato utilizzando materiali a bassa conducibilità termica per il serramento e per il profilo distanziatore tra le lastre.
5.2.1.2.7 Impiego di vetrate isolanti triple
Nelle vetrate isolanti triple (doppia camera), specie se composte con più lastre rivestite con coating, si realizzano condizioni di sollecitazione termica particolarmente elevata.

Laddove le specifiche progettuali richiedano l’impiego di vetrate isolanti triple, per prevenire il rischio di rotture della lastra centrale è opportuno, in sede di progettazione, valutare la necessità di eventuali lavorazioni aggiuntive, come un’accurata molatura dei bordi o il trattamento termico.

In certi casi l’utilizzo di vetro extrachiaro a basso contenuto di ferro può essere sufficiente a ridurre il rischio.

5.2.1.2.8 Tipo di telaio
La tipologia e le caratteristiche termiche del telaio e del distanziatore condizionano direttamente la temperatura del bordo del vetro e possono così influenzare il rischio di rottura per sollecitazioni di natura termica. Telai ad elevata inerzia termica accentuano i gradienti termici creando condizioni di maggiore sollecitazione termica.

5.2.1.2.9 Riscaldamento localizzato (radiatori, tubi radianti ad alta temperatura, ecc.), variazione della temperatura interna dell’abitazione (fancoils o surriscaldamenti localizzati), oggetti o strutture che trattengono o riflettono il calore sul vetro (tende, veneziane, ostruzioni retrostanti, ecc.)

In linea generale è necessario evitare l’accumulo di calore nell’ambiente interno in prossimità delle vetrate. Anche la presenza di oggetti adiacenti al vetro può provocare un riscaldamento disomogeneo della lastra e la conseguente rottura. La superficie libera del vetro deve essere esposta al clima interno in maniera omogenea. Nel caso in cui sia stata prevista, in sede di progettazione, una protezione schermante interna, questa dovrà essere installata a sufficiente distanza dalla lastra di vetro, per consentire una idonea circolazione d’aria.

Corpi riscaldanti come i termosifoni o i ventilconvettori possono rappresentare una ulteriore causa di riscaldamento disomogeneo della superficie vetrata, e devono pertanto essere posizionati ad un’adeguata distanza dal vetro. Nel caso in cui venga utilizzato un vetro trattato termicamente, tale distanza può essere tuttavia ridotta.

5.2.1.2.10 Serramenti scorrevoli sovrapponibili senza adeguata aerazione
Quando viene progettata una porta o una finestra scorrevole realizzata con vettrata isolante, in cui si possono verificare condizioni di sovrapposizione con altre superfici, si deve tener presente che tra questi elementi si viene a formare una camera aggiuntiva. In conseguenza della radiazione solare nella camera d’aria, non solo aumenta la temperatura ma il calore si disperde difficilmente, esponendo in tal modo le lastre di vetro ad un’ulteriore sollecitazione termica e quindi a rischio di rottura. In questi casi occorre valutare con cura quali siano le tipologie di vetro e/o le lavorazioni più idonee da utilizzare.

5.2.1.2.11 Precauzioni nel caso di carichi termici elevati – differenziali termici
Qualora si prevedano situazioni di carico termico dovuto a variazioni improvvisse di temperatura o a elevati differenziali di temperatura sulla stessa lastra, già in sede di progettazione è possibile ridurre il rischio di rotture, ricorrendo a lavorazioni supplementari del bordo delle lastre (molatura) e all’impiego di vetro extrachiaro, oppure, nei casi più critici, di vetro indurito o temprato.

N.B. Il vetro deve essere fornito corredato di marcatura CE e deve essere resa disponibile la Dichiarazione di Prestazione (DoP, vedi Capitolo 11) che ne specifica la resistenza ai differenziali di temperatura.
CAPITOLO 6. ISOLAMENTO ACUSTICO

Le caratteristiche di fonoisolamento dei prodotti vetrari, indicate dalle norme EN 12758 ed EN 717, sono fornite dai produttori a seguito di test eseguiti in laboratori specializzati, su pannelli di dimensioni normate.

Non va dimenticato che le effettive prestazioni dei vetri possono variare sensibilmente in considerazione delle diverse dimensioni di impiego e soprattutto delle modalità di posa in opera.

Il D.P.C.M. 5 dicembre 1997, attuativo della Legge quadro n. 447 del 26 ottobre 1995, fissa i requisiti di fonoisolamento relativi all’involucro, assegnando ad ogni tipologia di edificio il corrispondente valore di $D_{2m,nT,w}$ (isolamento acustico standardizzato di facciata); il range di abbattimento del livello sonoro di cui sopra è compreso tra 40 dB e 48 dB.

A seconda della composizione della vetrata, si possono raggiungere livelli di fonoisolamento in grado di soddisfare qualsiasi esigenza applicativa, anche con prestazioni maggiori di 48 dB.

N.B. Per aumentare le prestazioni antirumore di una vetrata isolante, è necessario utilizzare almeno uno stratificato antirumore che, a parità di spessore dei vetri, riduce sensibilmente la trasmissione del rumore.

6.1 LE PRESTAZIONI ACUSTICHE

Il D.P.C.M. classifica le tipologie edilizie (Tabella A – art. 2) e prescrive, per ciascuna delle parti componenti l’edificio, le relative prestazioni acustiche.

Tabella 6 - Classificazione degli ambienti abitativi (art. 2 D.P.C.M. 5 dicembre 1997)

<table>
<thead>
<tr>
<th>Classificazione degli ambienti abitativi</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Edifici adibiti a residenza o assimilabili</td>
</tr>
<tr>
<td>B</td>
<td>Edifici adibiti a uffici o assimilabili</td>
</tr>
<tr>
<td>C</td>
<td>Edifici adibiti ad alberghi, pensioni ed attività assimilabili</td>
</tr>
<tr>
<td>D</td>
<td>Edifici adibiti a ospedali, cliniche, case di cura e assimilabili</td>
</tr>
<tr>
<td>E</td>
<td>Edifici adibiti ad attività scolastiche a tutti i livelli e assimilabili</td>
</tr>
<tr>
<td>F</td>
<td>Edifici adibiti ad attività ricreative o di culto o assimilabili</td>
</tr>
<tr>
<td>G</td>
<td>Edifici adibiti ad attività commerciali o assimilabili</td>
</tr>
</tbody>
</table>
Tabella 7 - Valori limite (Art. 3 D.P.C.M. 5 dicembre 1997)

<table>
<thead>
<tr>
<th>Categorie edifici (da Tabella 9)</th>
<th>R_w</th>
<th>$D_{2m, nT, w}$</th>
<th>$L_{n, w}$</th>
<th>$L_{AS\ max}$</th>
<th>L_{Aeq}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. D</td>
<td>55</td>
<td>45</td>
<td>58</td>
<td>35</td>
<td>25</td>
</tr>
<tr>
<td>2. A, C</td>
<td>50</td>
<td>40</td>
<td>63</td>
<td>35</td>
<td>35</td>
</tr>
<tr>
<td>3. E</td>
<td>50</td>
<td>48</td>
<td>58</td>
<td>35</td>
<td>25</td>
</tr>
<tr>
<td>4. B, F, G</td>
<td>50</td>
<td>42</td>
<td>55</td>
<td>35</td>
<td>35</td>
</tr>
</tbody>
</table>

R_w: proprietà fonoisolante degli elementi di separazione tra due unità immobiliari distinte;

$D_{2m, nT, w}$: proprietà fono isolante della facciata;

$L_{n, w}$: proprietà fono isolante del solaio da rumori di impatto, come ad esempio il calpestio;

$L_{AS\ max}$: massimo livello di pressione sonora prodotta dai servizi a funzionamento discontinuo

L_{Aeq}: massimo livello di pressione sonora prodotta dai servizi a funzionamento continuo.

A titolo indicativo, si forniscono i seguenti dati relativi alle possibilità del miglioramento del potere fonoisolante con vetrate isolanti di diversa composizione, con o senza stratificati acustici:

<table>
<thead>
<tr>
<th>Vetrata isolante bassoemissiva</th>
<th>Isol. acust. R_w (dB)</th>
<th>Vetrata isolante bassoemissiva tripla 4/16/4/16/4</th>
<th>Isol. acust. R_w (dB)</th>
<th>Vetrata isolante acustica 6/16/44.1 A</th>
<th>Isol. acust. R_w (dB)</th>
<th>Vetrata isolante acustica 66.2A/16/44.2A</th>
<th>Isol. acust. R_w (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4/16/4</td>
<td>29</td>
<td>30</td>
<td>41</td>
<td>49</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Ulteriori esempi di tipologie di elementi vetrali impiegati in edilizia, corredati dai valori prestazionali più significativi, tra cui la riduzione del rumore aereo diretto, sono contenuti all’interno dell’Appendice D.

6.2 COME VERIFICARE LE CARATTERISTICHE ACUSTICHE DELLE VETRATE

Il vetro deve essere fornito corredata di marcatura CE e deve essere resa disponibile la Dichiarazione di Prestazione (DoP, vedi Capitolo 11) che ne specifica queste caratteristiche prestazionali.
I vetri resistenti al fuoco sono progettati per rispondere a tre differenti prestazioni:

- **E**: Ermeticità o tenuta: attitudine di un elemento ad offrire resistenza al passaggio delle fiamme e dei gas caldi al lato non esposto al fuoco, impedendo la combustione di elementi vicini a tale superficie;

- **W**: Resistenza all’irraggiamento: attitudine di un elemento a resistere ad un incendio agente su una sola faccia, limitando entro una specifica soglia la trasmissione di calore per irraggiamento, sia alla superficie non esposta al fuoco sia ad altri materiali ad essa adiacenti;

- **I**: Isolamento: attitudine di un elemento a sopportare l’esposizione ad un incendio agente su un solo lato, impedendo la propagazione per conduzione al lato protetto, evitando la combustione di materiali ad esso adiacenti e proteggendo le persone in prossimità.

Per ottenere la classificazione di resistenza al fuoco in base al D.M. 16 febbraio 2007, i prodotti devono soddisfare le condizioni di esposizione, i criteri prestazionali e le procedure di classificazione previste dalla norma EN 13501.

Per i prodotti vetrati sono quindi previste tre diverse classi di resistenza al fuoco in base alle prestazioni garantite:

- **E**;

- **EI** (mantenimento della temperatura media superficiale del lato non esposto < 140°C e con punte massime locali < 180°C);

- **EW** (mantenimento della radiazione al di sotto di 15 W/m² a 1 m di distanza).

In base alla prestazione, vi sono prodotti che resistono 30’ – 60’ – 90’ – 120’.

I produttori sono in condizione di fornire i vetri richiesti e le relative certificazioni prestazionali.

Grazie all’innovazione tecnologica e ad un continuo investimento nella ricerca, sono disponibili, infatti, prodotti vetrari che assicurano la classe prestazionale al fuoco richiesta anche per applicazioni specifiche, quali coperture calpestabili o lastre di grandi dimensioni, assicurando al contempo prestazioni aggiuntive, come il controllo solare e la sicurezza per gli utenti, mantenendo spessori contenuti.

7.1 COME VERIFICARE LE CARATTERISTICHE DI RESISTENZA E REAZIONE AL FUOCO DELLE VETRATE

Il vetro deve essere fornito corredato di marcatura CE e deve essere resa disponibile la Dichiarazione di Prestazione (DoP, vedi Capitolo 11) che ne specifica queste caratteristiche prestazionali.

Tuttavia è opportuno verificare l’idoneità dell’intero sistema a garantire la compartimentazione richiesta.
CAPITOLO 8. MONTAGGIO

La norma di riferimento per il montaggio e la posa dei prodotti vetrari in opere edilizie è la UNI 6534:1974. Ulteriori indicazioni pratiche possono essere tratte dalla prEN 12488 o fornite dal produttore stesso.

In relazione alla sicurezza dell’installazione, devono essere rispettate, se presenti, anche tutte le altre prescrizioni emanate dalle Autorità o previste dalle norme di riferimento applicabili (Vigili del fuoco, ecc.).

I principi fondamentali da seguire durante le operazioni di montaggio sono i seguenti:

- il vetro non deve essere vincolato ai movimenti del serramento in cui è inserito; i due componenti debbono avere un buon grado di libertà reciproca;
- devono essere sempre evitati contatti diretti tra il vetro ed il serramento a mezzo di opportuni tasselli distanziatori;
- le schermature dei bordi, quali ad esempio la parte di lastra compresa nel telaio di un serramento, devono essere ridotte al necessario (l’aspetto è critico per i vetri ad elevato assorbimento energetico, vedi Capitolo 5).

Le vetrate trasparenti poste in luoghi di passaggio, che si trovino a rischio di impatto per la loro scarsa visibilità, devono essere adeguatamente segnalate sia in fase di montaggio/cantiere sia, successivamente, durante l’impiego.

Le lastre asimmetriche (per composizione e/o tipologia di superficie) devono essere orientate con il lato sottoposto ad impatto durante le prove rivolto verso la direzione di provenienza della sollecitazione da contrastare durante l’impiego.

Assovetro ha pubblicato le “Linee Guida per il montaggio delle vetrate isolanti”, in cui si evidenziano i comportamenti virtuosi da adottare durante le operazioni di trasporto, montaggio, stoccaggio e movimentazione delle lastre, atti ad evitare il danneggiamento delle stesse o eventuali sollecitazioni meccaniche tali da danneggiare la funzionalità del giunto perimetrale.

Il trasporto delle lastre deve essere effettuato necessariamente in casse oppure su cavalleggi, curandone il fissaggio così da evitare pressioni sulle vetrate.

Prima del montaggio bisogna controllare ogni singolo pannello di vetro ed evitare di installare gli elementi danneggiati o difettosi. Lo stoccaggio delle vetrate, mantenute in posizione verticale e reciprocamente distanziate con elementi distanziatori, deve avvenire in condizioni riparate da agenti fisici o chimici dannosi.

Sulla lastra montata l’eventuale inflessione, misurabile al centro della lastra sotto carico di esercizio, non dovrà superare 1/200 del lato minore della stessa, così da garantire nel tempo la funzionalità del giunto perimetrale.

8.1 SUGGERIMENTI PER IL CANTIERE

8.1.1 Stoccaggio del materiale in cantiere

Le vetrate vanno conservate, opportunamente distanziate tra loro, coperte, aerate e protette dall’umidità e dall’irraggiamento solare diretto; in caso contrario si possono verificare condizioni critiche le quali possono favorire una rottura per sollecitazione termica, nonché compromettere la
durabilità. Bisogna proteggere non solo la superficie, ma soprattutto il bordo del vetro da danneggiamenti.

8.1.2 Precauzioni durante i lavori di cantiere

Durante il periodo di esercizio del cantiere, la presenza di impalcature temporanee può generare ombre statiche sulle superfici vetrate che potrebbero portare a rotture per elevato gradiente termico.

Nel caso in cui, successivamente alla installazione di finestre e vetrate, venga effettuata una qualunque lavorazione da cui ne consegue l’insorgere di elevate temperature in prossimità dei vetri, la superficie vetrata andrà adeguatamente protetta.

Qualora le vetrate siano posate prima dell’ultimazione dei lavori che possono interessare la facciata, è bene che siano protette coprendole interamente.

8.1.3 Precauzioni a fine lavori di cantiere

Dopo il montaggio delle parti vetrate, è necessario rimuovere tempestivamente adesivi ed altre componenti opache che possano schermare l’irraggiamento solare e quindi creare sollecitazioni termiche, a rischio rottura.

Alla fine dei lavori di cantiere, è opportuno che la facciata sia lavata con abbondante irrorazione di acqua per eliminare residui di sostanze alcaline derivanti dai vari componenti edili impiegati.
CAPITOLO 9. MANUTENZIONE

Il vetro si lava con i normali prodotti reperibili sul mercato, evitando di esercitare abrasioni meccaniche che lo potrebbero graffiare.

Le operazioni di pulizia e lavaggio del vetro devono avvenire in maniera tale da ridurre al minimo le sollecitazioni termiche; va quindi evitato l’utilizzo di acqua eccessivamente calda (o eccessivamente fredda d’estate) e di vapore ad alta pressione per un tempo prolungato su di una zona circoscritta della lastra.

Nella progettazione e nella realizzazione di edifici di elevata altezza, nonché in quelli caratterizzati dalla presenza di estese superfici vetrarie, è opportuno prevedere la possibilità di accesso alle superfici da pulire, anche facendo ricorso alla predisposizione di punti di ancoraggio di sistemi manutentivi esterni.

9.1 VETRI AUTOPULENTI

È la generazione di nuovi prodotti, realizzati dall’industria vetraria proprio per diminuire drasticamente l’esigenza delle operazioni di pulizia, particularly onerose sulle facciate.

Questi vetri consentono una ridotta manutenzione, grazie all’azione del deposito applicato sulla superficie, dalle spiccate capacità di fotocatalisi.

Il “deposito” determina il distacco dello sporco dalla superficie vetrata e la semplice azione dell’acqua piovana lo asporta.
CAPITOLO 10. ASPETTI PRESTAZIONALI E QUALITATIVI

La marcatura CE è obbligatoria e costituisce condizione necessaria per la libera circolazione dei prodotti nella comunità europea, rendendo i produttori responsabili della conformità del prodotto da costruzione alla Dichiarazione di Prestazione, che deve obbligatoriamente accompagnare il prodotto fornito.

In tutti i maggiori paesi europei, inoltre, sono adottate certificazioni volontarie di prodotto attestate da Marchi (in Italia Marchio CSICERT UNI) che per vetrate isolanti, vetri temprati e stratificati, possono essere apposti solo da aziende produttrici che adottano un sistema di controllo sul processo e sul prodotto definito da Regolamenti e più severo di quello richiesto dalla marcatura CE.

Tale sistema di controllo richiesto dai Regolamenti per il Marchio CSICERT UNI è sottoposto a verifiche ispettive eseguite senza preavviso presso le aziende licenziatarie da parte di Enti Esterni qualificati e notificati alla Commissione Europea (CSI e Stazione Sperimentale del Vetro). Nel corso di queste verifiche, vengono sistematicamente prelevati campioni da sottoporre a prova. Questo tipo di controlli non trova riscontro nei prodotti con sola marcatura CE, che non prevede né visite (tranne che per vetrate antiproiettile, antifuoco e antiesplosione) né ripetizioni delle prove.

Come detto sopra, questi controlli sono finalizzati a verificare le prestazioni e ad assicurare una maggiore durabilità del prodotto per garantire maggiormente il cliente finale sulla qualità delle forniture che gli vengono consegnate.

Il prodotto certificato deve essere marchiato CSICERT UNI, secondo le modalità previste, per renderlo riconoscibile. L’azienda detentrice del marchio è in grado di documentarlo attraverso il certificato rilasciato dall’ente terzo (CSI).

In materia di qualità del prodotto, si ricorda inoltre che Assovetro ha promosso il “Disciplinare sulla Qualità ottica e visiva delle vetrate per serramenti”, recepito nel 2011 nel Rapporto Tecnico UNI/TR 11404, che fornisce i riferimenti per garantire un livello qualitativo elevato e ben definito del vetro e rappresenta un valido strumento in sede contrattuale, utile anche per ridurre i contenziosi tra gli operatori interessati.

In esso si stabiliscono le modalità di esame delle vetrate ed i limiti entro i quali eventuali imperfezioni non siano da considerarsi difetti.

La lastra viene distinta in zona di battuta (B), zona bordo perimetrale (P) e zona principale di visione (V), e per ciascuna zona si chiariscono le tolleranze in riferimento alla presenza di:
- conchiglie e residui di scaglie;
- inclusioni, bolle, punti e macchie;
- residui puntiformi nell’intercapedine di vetrate isolanti;
- residui superficiali nell’intercapedine di colore bianco-grigiastro trasparente;
- graffi e graffi capillari.

Tali tolleranze, oltre ad essere diverse per ciascuna zona, cambiano in presenza di vetrate isolanti multiple e nel caso si utilizzi vetro stratificato o vetro temprato. Nel documento sono indicati anche i limiti di tolleranza accettabili.
CAPITOLO 11. DICHIARAZIONE DI PRESTAZIONE (DoP) E MARCATURA CE

11.1 DoP (REGOLAMENTO (UE) N. 305/2011)

La Dichiarazione di Prestazione (DoP) deve contenere le seguenti informazioni previste dalla legislazione:

- il riferimento del prodotto-tipo per cui è stata redatta;
- i sistemi di valutazione e verifica della costanza della prestazione del prodotto;
- il numero di riferimento e la data di pubblicazione della norma armonizzata;
- l’uso o gli usi previsti del prodotto da costruzione;
- l’elenco delle caratteristiche essenziali secondo quanto stabilito nella specifica tecnica armonizzata applicabile;
- la prestazione di almeno una delle caratteristiche essenziali del prodotto;
- nome e numero di identificazione dell’organismo notificato, se pertinente;
- nome, denominazione commerciale registrata o marchio registrato e indirizzo del fabbricante;
- luogo e data di emissione;
- nome, funzioni e relativa firma del soggetto che rilascia la Dichiarazione in rappresentanza del fabbricante.

Inoltre vanno rese disponibili le ulteriori caratteristiche prestazionali richieste dalla commissione d’ordine.

Per alcune delle caratteristiche prese in esame nella presente Linea Guida, le norme di prodotto EN forniscono i valori standard generalmente accettati.

Per la redazione della Dichiarazione di Prestazione si può seguire il modello riportato all’Allegato III del Regolamento (UE) N. 305/2011, rielaborato nell’esempio proposto al termine del paragrafo.

11.2 MARCATURA CE (REGOLAMENTO (UE) N. 305/2011)

Ai sensi del Regolamento, i fabbricanti, contestualmente alla redazione della Dichiarazione di Prestazione, che deve essere resa disponibile per ogni prodotto, devono apporre nel modo previsto dalla norma la marcatura CE, che deve essere visibile, leggibile e indelebile e deve contenere:

- ultime due cifre dell’anno in cui è stata apposta per la prima volta;
- nome e indirizzo della sede legale del fabbricante o marchio identificativo;
- codice unico di identificazione del prodotto tipo (e dell’organismo notificato, se del caso);
- numero di riferimento della Dichiarazione di Prestazione;
- riferimento alla specifica norma tecnica armonizzata e uso previsto.

Se il prodotto, per la sua natura e dimensioni, rendesse impossibile od ingiustificato l’apposizione di tutte le indicazioni richieste, queste possono essere fornite sull’imballaggio o sui documenti di accompagnamento.
ESEMPIO: Dichiarazione di Prestazione per una Vetrata isolante

DICHIAZARIONE DI PRESTAZIONE N. FGH456

Vetrata isolante per impiego in edifici e costruzioni
AnyCo Ltd, PO Box 21 B-1050
EN 1279-5: 2010

CARATTERISTICHE ESSENZIALI	Sistemi VVCP	Prestazione	Norma EN

Sicurezza in caso d’incendio
- Resistenza al fuoco: 1 NPD EN 13501-2
- Reazione al fuoco: 3, 4 NPD EN 13501-1
- Comportamento al fuoco esterno: 3, 4 NPD EN 13501-5

Sicurezza nell’impiego
- Resistenza ai proiettili: 1 NPD EN 1063
- Resistenza all’esplosione: 1 NPD EN 13541
- Resistenza all’effrazione: 3 NPD EN 356
- Resistenza all’impatto di un corpo oscillante: 3 NPD EN 12600
- Resistenza contro variazioni improvvisi di temperature e ai differenziali di temperatura (K): 4 NPD EN 1279-5, punto 4.3.2.10
- Resistenza meccanica: resistenza contro il carico da vento, neve, permanente e imposti e/o i carichi imposti della vetrata e della sigillatura del bordo quando richiesto: 4 NPD EN 1279-5, punto 4.3.2.10

Protezione contro il rumore
- Riduzione del rumore aereo diretto (dB): 3 NPD EN 12758

Proprietà termiche
- Emissività dichiarata: 3 NPD EN 12898
- Valore di trasmittanza U_g (W/m²K): 1.2 W/m²K EN 673

Proprietà radiative
- Trasmittanza luminosa: 3 0.73 0.11/0.11 EN 410
- Riflettanza luminosa: 3 0.73 0.11/0.11 EN 410

Caratteristiche dell’energia solare
- Trasmittanza solare diretta: 3 NPD EN 410
- Riflettanza: 3 NPD EN 410
- Fattore solare: 3 0.43 EN 410

Durabilità
- PASS /

DOCUMENTO DI ACCOMPAGNAMENTO DICHIARAZIONE DI PRESTAZIONE N. FGH456

PERIETORI CARATTERISTICHE

| Assorbimento energia solare | 3 | 0.27 | EN 410 |
| Trasmittanza termica lineare ψ del distanziatore | 3 | 0.11 W/mK | / |
ALLEGATI

ALLEGATO 1: Schema per la progettazione
ALLEGATO 2: Scheda “Verifica del progetto”
ALLEGATO 3: Scheda “Verifica del cantiere”
SCHEMA PER LA PROGETTAZIONE: INVOLUCRO

<table>
<thead>
<tr>
<th>Tipo di Vetrata</th>
<th>Vetrata isolante</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proprietà termiche e luminose</td>
<td></td>
</tr>
<tr>
<td>trasmittanza termica del serramento U_w [W/m²K]</td>
<td>Ristrutturazioni importanti 2° livello e Riqualificazioni energetiche</td>
</tr>
<tr>
<td></td>
<td>dal 1/10/2015</td>
</tr>
<tr>
<td></td>
<td>dal 1/1/2019 per edifici pubblici e ad uso pubblico dal 1/1/2021 per tutti gli edifici</td>
</tr>
<tr>
<td></td>
<td>3.2</td>
</tr>
<tr>
<td>con detrazioni</td>
<td>orientamento da Est a Ovest, passando per Sud</td>
</tr>
<tr>
<td></td>
<td>< 35%</td>
</tr>
<tr>
<td>fattore solare globale g_{gl+sh} [%]</td>
<td>trasmissione luminosa τ_v [%]</td>
</tr>
<tr>
<td>Isolamento Acustico</td>
<td>CLASSIFICAZIONE DEGLI AMBIENTI ABITATIVI</td>
</tr>
<tr>
<td>isolamento acustico standardizzato di facciata $D_{2m,nT,w}$ [dB]</td>
<td>ospedali</td>
</tr>
<tr>
<td></td>
<td>45</td>
</tr>
<tr>
<td>Sicurezza</td>
<td>in conformità alla norma UNI 7697, tipo di vetro e classe prestazionale dei vetri secondo applicazione, in base a destinazione d’uso degli edifici</td>
</tr>
<tr>
<td>Dimensionamento spessori</td>
<td>secondo NTC, generalmente eseguito dal progettista del kit o della lastra</td>
</tr>
<tr>
<td>carico vento</td>
<td></td>
</tr>
<tr>
<td>carico neve</td>
<td></td>
</tr>
<tr>
<td>carichi orizzontali (concentrati / distribuiti): folla</td>
<td></td>
</tr>
<tr>
<td>Difettosità di aspetto</td>
<td>vedi UNI/TR 11404</td>
</tr>
<tr>
<td>Richieste specifiche</td>
<td>secondo esigenze particolari</td>
</tr>
<tr>
<td>esigenze estetiche</td>
<td>comfot cromatico</td>
</tr>
<tr>
<td>comfort luminoso riflessione</td>
<td></td>
</tr>
</tbody>
</table>
Schema per la Progettazione: Vetri Interni

<table>
<thead>
<tr>
<th>Proprietà Luminose</th>
<th>Vetrata isolante / Vetro monolitico secondo esigenza</th>
</tr>
</thead>
<tbody>
<tr>
<td>trasmissione luminosa τ_v [%]</td>
<td></td>
</tr>
<tr>
<td>Isolamento Acustico</td>
<td>secondo destinazione d’uso ambienti</td>
</tr>
<tr>
<td>Sicurezza</td>
<td>in conformità alla norma UNI 7697, tipo di vetro e classe prestazionale dei vetri secondo applicazione, in base a destinazione d’uso degli edifici</td>
</tr>
<tr>
<td>Dimensionamento spessori</td>
<td>secondo NTC, generalmente eseguito dal progettista del kit o della lastra</td>
</tr>
<tr>
<td>Difettosità di aspetto</td>
<td>vedi UNI/TR 11404</td>
</tr>
<tr>
<td>Richieste specifiche</td>
<td>secondo esigenze particolari</td>
</tr>
<tr>
<td>esigenze estetiche comfort cromatico comfort luminoso riflessione</td>
<td></td>
</tr>
<tr>
<td>Riferimenti</td>
<td>Edificio (1)</td>
</tr>
<tr>
<td>-------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Numero verifica (3)</td>
<td>Proprietario dell’immobile (4)</td>
</tr>
<tr>
<td>Protocollo (5)</td>
<td>Tecnico comunale (6)</td>
</tr>
<tr>
<td>Progettista (7)</td>
<td>Tecnico che presenta la domanda (8)</td>
</tr>
</tbody>
</table>

Strumenti per la progettazione

- Software di calcolo utilizzato (10)
- Validato CTI

Verifica della coerenza e completezza della documentazione D. Lgs. 192/05 e s.m.i.

1. La relazione tecnica e la documentazione grafica sono coerenti tra loro
 - Sì
 - No
2. Gli schemi di calcolo delle trasmittanze sono completi e coerenti
 - Sì
 - No
3. I valori di S/V ed il calcolo dell’ H’ sono coerenti
 - Sì
 - No
4. I ponti termici sono calcolati e rappresentati graficamente in modo corretto
 - Sì
 - No
5. Coerenza tra trasmittanze del rapporto tecnico con quelle del progetto (disegni e relazioni tecniche)
 - Sì
 - No
6. È presente una relazione tecnica per il calcolo dello sfasamento/attenuazione (se prevista la classificazione estiva)
 - Sì
 - No

Verifiche dimensionali – Volumi (12)

<table>
<thead>
<tr>
<th>Edificio / Zona</th>
<th>Vol. prog. [m³]</th>
<th>Vol. calc. [m³]</th>
<th>Verifica</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sì</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sì</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sì</td>
</tr>
</tbody>
</table>

Verifiche dimensionali – Superfici (12)

<table>
<thead>
<tr>
<th>Edificio / Zona</th>
<th>Sup. prog. [m²]</th>
<th>Sup. calc. [m²]</th>
<th>Verifica</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sì</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sì</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sì</td>
</tr>
</tbody>
</table>

Verifica energetica strutture opache – MURATURE VERTICALI (13)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

I valori di U sono aumentati del 30% rispetto ai valori minimi perché verifica il punto 1.4.3, c. 2 del Decreto 2015

Verifica energetica strutture opache – PAVIMENTI (13)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

I valori di U sono aumentati del 30% rispetto ai valori minimi perché verifica il punto 1.4.3, c. 2 del Decreto 2015

Documentazione:
- A) Riferimenti costruttore
- B) Norme UNI
Verifica energetica strutture opache – COPERTURA (13)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>A</td>
<td>B</td>
<td>SI</td>
<td>NO</td>
<td>NO</td>
<td>SI</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A</td>
<td>B</td>
<td>SI</td>
<td>NO</td>
<td>NO</td>
<td>SI</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A</td>
<td>B</td>
<td>SI</td>
<td>NO</td>
<td>NO</td>
<td>SI</td>
</tr>
</tbody>
</table>

I valori di U sono aumentati del 30% rispetto ai valori minimi perché verifica il punto 1.4.3, c. 2 del Decreto 2015

Documentazione:

- A Riferimenti costruttore
- B Norme UNI

Verifica energetica strutture trasparenti (13)

<table>
<thead>
<tr>
<th>Strutt</th>
<th>Descrizione</th>
<th>Uw [W/m²K]</th>
<th>Ug [W/m²K]</th>
<th>Certificazione</th>
<th>Marchio UNI vetrate isolanti</th>
<th>Verifica (solo Uw)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>A</td>
<td>B</td>
<td>SI</td>
<td>NO</td>
<td>NO</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A</td>
<td>B</td>
<td>SI</td>
<td>NO</td>
<td>NO</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A</td>
<td>B</td>
<td>SI</td>
<td>NO</td>
<td>NO</td>
</tr>
</tbody>
</table>

I valori di U sono aumentati del 30% rispetto ai valori minimi perché verifica il punto 1.4.3, c. 2 del Decreto 2015

I prodotti forniti saranno accompagnati dalla marcature CE come disposto dal Regolamento (UE) N. 305/2011

Documentazione:

- A Certificazione di Istituto di prove di laboratorio riconosciuto
- B Norme UNI

Note

- Verifica della coerenza e completezza della documentazione D.Lgs. 192/05 e s.m.i.

IMPIANTI (14)

1. Coerenza progetto esecutivo impianto termico climatizzazione invernale
2. Coerenza progetto esecutivo impianto termico climatizzazione estiva
3. In presenza dell’impianto solare termico, i disegni e le caratteristiche tecniche sono complete e coerenti con il progetto e con le normative locali vigenti
4. In presenza dell’impianto solare fotovoltaico, i disegni e le caratteristiche tecniche sono complete e coerenti con il progetto e con le normative locali vigenti
5. Le fonti rinnovabili sono correttamente dimensionate in base al fabbisogno energetico di riferimento per l’ACS e con le normative locali vigenti

Verifica della coerenza e completezza della documentazione D.Lgs. 192/05 e s.m.i.

<table>
<thead>
<tr>
<th>Verifica</th>
</tr>
</thead>
<tbody>
<tr>
<td>SI</td>
</tr>
<tr>
<td>SI</td>
</tr>
<tr>
<td>SI</td>
</tr>
</tbody>
</table>

Generatore (15)

<table>
<thead>
<tr>
<th>Tipo</th>
<th>Combustibile</th>
<th>Potenza</th>
<th>Verifica</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>SI</td>
<td>NO</td>
</tr>
</tbody>
</table>

Generatore (15)

<table>
<thead>
<tr>
<th>Superficie</th>
<th>Inclin.</th>
<th>Orient.</th>
<th>Potenza</th>
<th>Verifica</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SI</td>
<td>NO</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sistema di distribuzione, erogazione e controllo (16)

<table>
<thead>
<tr>
<th>Tipo</th>
<th>Verifica</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SI</td>
</tr>
</tbody>
</table>

Sistema di distribuzione

<table>
<thead>
<tr>
<th>Terminali scaldanti</th>
<th>Sistema di regolazione centrale</th>
<th>Sistema di regolazione di zona</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SI</td>
<td>NO</td>
</tr>
</tbody>
</table>

Progetto

<table>
<thead>
<tr>
<th>Progettista</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Sistema di regolazione ambiente</td>
<td>SI</td>
</tr>
<tr>
<td>Note:</td>
<td></td>
</tr>
<tr>
<td>Comunicazioni (17)</td>
<td>Comunicazione al Proprietario</td>
</tr>
</tbody>
</table>

Istruzioni per la compilazione

1. **Edificio:** indicare il tipo di edificio: abitazione, scuola, uffici, misto, ecc.
2. **Indirizzo:** Indirizzo dell'edificio
3. **Numero di verifica:** Indicare il numero di verifiche (prima, seconda, terza, ecc.)
4. **Proprietario:** Indicare il nome delle proprietà
5. **Protocollo:** Indicare il numero di protocollo se è stato già protocollato
6. **Tecnico comunale:** Indicare il nome del tecnico che controlla la pratica
7. **Progettista:** Indicare il nome del progettista
8. **Tecnico che presenta la domanda:** Indicare il nome di chi presenta il progetto oppure il nome della persona che rappresenta quel giorno che dialoga con il tecnico comunale
9. **Norme di riferimento utilizzate per il calcolo degli EP:** Indicare le norme di riferimento utilizzate (UNI TS 11300, UNI 13790, ...)
10. **Software di calcolo utilizzato:** Indicare il software di calcolo utilizzato per il calcolo degli EP riportando se è stato validato dal CTI
11. **Verifica involucro:** Indicare selezionando si o no se la documentazione ricevuta risponde alla normativa vigente, verificare la presenza dei disegni necessari alla comprensione delle soluzione tecniche adottate, in particolare la soluzione dei ponti termici
12. **Verifiche dimensionali:** Indicare le dimensioni di volume e superfici delle singole zone termiche omogenee ed indicare selezionando si o no se i valori calcolati corrispondono con quelli di progetto
13. **Verifica energetica delle strutture opache e trasparenti:** Descrivere la struttura, indicando il valore U, la conducibilità λ dell’isolante termico e lo spessore, verificando se i valori di λ riportati sono dichiarati dal costruttore oppure se è fatto riferimento alla norma UNI. Indicare se il materiale utilizzato ha la marcatura CE e se la trasmittanza U degli elementi verifica i valori richiesti dalla legge nazionale e/o regionale o comunale. Nell’involucro trasparente indicare il valore U del vetro e del serramento, così come il valore del fattore solare (g)
14. **Verifica degli impianti:** Indicare, selezionando si o no, se la documentazione ricevuta è coerente con il progetto presentato e se i rendimenti e la dimensione degli impianti rispondono alle normative nazionali e locali vigenti
15. **Generatore:** Indicare il tipo di generatore (caldaia standard, a condensazione, pompa di calore, cogeneratore, teleriscaldamento ecc.), il tipo di combustibile (gas, biomassa, ecc.), la superficie captante degli impianti solari, l’inclinazione rispetto al piano orizzontale in gradi e il suo orientamento (est/sud/ovest/sudest o sudovest)
16. **Sistema di distribuzione, erogazione e controllo:** Indicare il tipo di distribuzione (impianto centralizzato, o individuale), i terminali scaldanti (radiatori, ventilconvettori, pavimenti, pereti o soffitto radiante, termoconvettori bocchette in sistemi ad aria calda, ecc.), il sistema di regolazione (manuale, on-off, modulante),
17. **Comunicazioni:** Indicare i documenti integrativi necessari per procedere al protocollo
Logo del Comune SCHEDA “VERIFICA DEL CANTIERE” VC

<table>
<thead>
<tr>
<th>Riferimenti</th>
<th>Edificio (1)</th>
<th>Indirizzo (2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Numero verifica (3)</td>
<td>Proprietario dell’immobile (4)</td>
<td></td>
</tr>
<tr>
<td>Protocollo (5)</td>
<td>Tecnico comunale (6)</td>
<td></td>
</tr>
<tr>
<td>Progettista (7)</td>
<td>Tecnico che presenta la domanda (8)</td>
<td></td>
</tr>
</tbody>
</table>

Strumenti per la progettazione

Norme di riferimento utilizzate per il calcolo degli EP (9)

Software di calcolo utilizzato (10) Validato CTI SI NO

Verifica della coerenza e completezza della documentazione D. Lgs. 192/05 e s.m.i.

<table>
<thead>
<tr>
<th>INVOLUCRO (11)</th>
<th>Verifica</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. La relazione tecnica e la documentazione grafica sono coerenti tra loro</td>
<td>SI NO</td>
</tr>
<tr>
<td>2. Gli schemi di calcolo delle trasmittanze sono completi e coerenti</td>
<td>SI NO</td>
</tr>
<tr>
<td>3. I valori di S/V ed il calcolo dell’$H’$ son coerenti</td>
<td>SI NO</td>
</tr>
<tr>
<td>4. I ponti termici sono calcolati e rappresentati graficamente in modo corretto</td>
<td>SI NO</td>
</tr>
<tr>
<td>5. Coerenza tra trasmittanze del rapporto tecnico con quelle del progetto (disegni e relazioni tecniche)</td>
<td>SI NO</td>
</tr>
<tr>
<td>6. È presente una relazione tecnica per il calcolo dello sfasamento/attenuazione (se prevista la classificazione estiva)</td>
<td>SI NO</td>
</tr>
</tbody>
</table>

Verifiche dimensionali – Volumi (12)

<table>
<thead>
<tr>
<th>Edificio / Zona</th>
<th>Vol. prog. [m³]</th>
<th>Vol. calc. [m³]</th>
<th>Verifica</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>SI NO</td>
</tr>
</tbody>
</table>

Verifiche dimensionali – Superfici (12)

<table>
<thead>
<tr>
<th>Edificio / Zona</th>
<th>Sup. prog. [m²]</th>
<th>Sup. calc. [m²]</th>
<th>Verifica</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>SI NO</td>
</tr>
</tbody>
</table>

Verifica energetica strutture opache – MURATURE VERTICALI (13)

<table>
<thead>
<tr>
<th>Strutt</th>
<th>Descrizione</th>
<th>U [W/m²K]</th>
<th>λ isol. [W/mK]</th>
<th>Sp. isol. [m]</th>
<th>Docum.</th>
<th>Marcatura CE</th>
<th>Verifica</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SI NO</td>
</tr>
</tbody>
</table>

I valori di U sono aumentati del 30% rispetto ai valori minimi perché verifica il punto 1.4.3, c. 2 del Decreto 2015 SI NO

Documentazione: A) Riferimenti costruttore B) Norme UNI

Verifica energetica strutture opache – PAVIMENTI (13)

<table>
<thead>
<tr>
<th>Strutt</th>
<th>Descrizione</th>
<th>U [W/m²K]</th>
<th>λ isol. [W/mK]</th>
<th>Sp. isol. [m]</th>
<th>Docum.</th>
<th>Marcatura CE</th>
<th>Verifica</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SI NO</td>
</tr>
</tbody>
</table>

I valori di U sono aumentati del 30% rispetto ai valori minimi perché verifica il punto 1.4.3, c. 2 del Decreto 2015 SI NO

Documentazione: A) Riferimenti costruttore B) Norme UNI
Verifica energetica strutture opache – COPERTURA (13)

<table>
<thead>
<tr>
<th>Strutt</th>
<th>Descrizione</th>
<th>Uw [W/m²K]</th>
<th>Ud [W/m²K]</th>
<th>g_{gl+sh} ≤ 0.5*</th>
<th>Certificazione</th>
<th>Marchio UNI</th>
<th>Marcatura CE</th>
<th>Verifica</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SI</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SI</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SI</td>
</tr>
</tbody>
</table>

I valori di U sono aumentati del 30% rispetto ai valori minimi perché verifica il punto 1.4.3, c. 2 del Decreto 2015

Note

Verifica energetica strutture trasparenti (13)

<table>
<thead>
<tr>
<th>Strutt</th>
<th>Descrizione</th>
<th>Uw [W/m²K]</th>
<th>Ud [W/m²K]</th>
<th>g_{gl+sh} ≤ 0.5*</th>
<th>Certificazione</th>
<th>Marchio UNI</th>
<th>Marcatura CE</th>
<th>Verifica</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SI</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SI</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SI</td>
</tr>
</tbody>
</table>

I valori di U sono aumentati del 30% rispetto ai valori minimi perché verifica il punto 1.4.3, c. 2 del Decreto 2015

Verifica della coerenza e completezza della documentazione D. Lgs. 192/05 e s.m.i.

IMPIANTI (14)

1. Coerenza progetto esecutivo impianto termico climatizzazione invernale
2. Coerenza progetto esecutivo impianto termico climatizzazione estiva
3. In presenza dell’impianto solare termico, i disegni e le caratteristiche tecniche sono complete e coerenti con il progetto e con le normative locali vigenti
4. In presenza dell’impianto solare fotovoltaico, i disegni e le caratteristiche tecniche sono complete e coerenti con il progetto e con le normative locali vigenti
5. Le fonti rinnovabili sono correttamente dimensionate in base al fabbisogno energetico di riferimento per l’ACS e con le normative locali vigenti

Generatore (15)

<table>
<thead>
<tr>
<th>Tipo</th>
<th>Combustibile</th>
<th>Potenza</th>
<th>Verifica</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>SI</td>
<td>NO</td>
</tr>
</tbody>
</table>

Generatore (15)

<table>
<thead>
<tr>
<th>Tipo</th>
<th>Superficie</th>
<th>Inclin.</th>
<th>Orient.</th>
<th>Potenza</th>
<th>Verifica</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>SI</td>
<td>NO</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sistema di distribuzione, erogazione e controllo (16)

<table>
<thead>
<tr>
<th>Tipo</th>
<th>Verifica</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SI</td>
</tr>
</tbody>
</table>
Note:

Comunicazioni (17) [] Comunicazione al Proprietario [] Comunicazione al Progettista

Istruzioni per la compilazione

1. Edificio
 indicare il tipo di edificio: abitazione, scuola, uffici, misto, ecc.

2. Indirizzo
 Indirizzo dell’edificio

3. Numero di verifica
 Indicare il numero di verifiche (prima, seconda, terza, ecc.)

4. Proprietario
 Indicare il nome delle proprietà

5. Protocollo
 Indicare il numero di protocollo se è stato già protocollato

6. Tecnico comunale
 Indicare il nome del tecnico che controlla la pratica

7. Progettista
 Indicare il nome del progettista

8. Tecnico che presenta la domanda
 Indicare il nome di chi presenta il progetto oppure il nome della persona che rappresenta quel giorno che dialoga con il tecnico comunale

9. Norme di riferimento utilizzate per il calcolo degli EP
 Indicare le norme di riferimento utilizzate (UNI TS 11300, UNI 13790, …)

10. Software di calcolo utilizzato
 Indicare il software di calcolo utilizzato per il calcolo degli EP riportando se è stato validato dal CTI

11. Verifica involucro
 Indicare, selezionando si o no, se la documentazione ricevuta risponde alla normativa vigente, verificando la presenza dei disegni necessari alla comprensione delle soluzioni tecniche adottate, in particolare la soluzione dei ponti termici

12. Verifiche dimensionali
 Indicare le dimensioni di volume e superfici delle singole zone termiche omogenee ed indicare, selezionando si o no, se i valori calcolati corrispondono con quelli di progetto

13. Verifica energetica delle strutture opache e trasparenti
 Descrivere la struttura, indicando il valore U, la conducibilità λ del isolante termico e lo spessore, verificando se i valori di λ riportati sono dichiarati dal costruttore oppure si è fatto riferimento alla norma UNI. Indicare se il materiale utilizzato ha la marcatura CE e se la trasmittanza U degli elementi verifica i valori richiesti dalla legge nazionale e/o regionale o dalla normativa comunale. Nell’involucro trasparente indicare il valore U del vetro (Ug) e del serramento (Uw), così come il valore del fattore solare (g)

14. Verifica degli impianti
 Indicare selezionando si o no se la documentazione ricevuta è coerente con il progetto presentato e se le dimensioni e rendimenti degli impianti rispondono alle normative nazionali e locali vigenti

15. Generatore
 Indicare il tipo di generatore (caldaia standard, a condensazione, pompa di calore, cogeneratore, telerscaldamento ecc.), il tipo di combustibile (gas, biomassa, ecc.), la superficie captante degli impianti solari, l’inclinazione rispetto al piano orizzontale in gradi e il suo orientamento (est/sud/ovest/sudest o sudovest)

16. Sistema di distribuzione, erogazione e controllo
 Indicare il tipo di distribuzione (impianto centralizzato, o individuale), i terminali scaldanti (radiatori, ventilconvettori, pavimenti, pereti o soffitto radiante, termoconvettori bocchette in sistemi ad aria calda, ecc.), il sistema di regolazione (manuale, on-off, modulante),

17. Comunicazioni
 Indicare i documenti integrativi necessari per procedere al protocollo

Logo del Comune

SCHEDA “VERIFICA DEL CANTIERE” VC

Progetto Progettista Data
APPENDICI

APPENDICE A: Sicurezza

APPENDICE B: Indicazioni per prevenire il rischio di rotture da sollecitazione termica

APPENDICE C: Efficienza Energetica nell’edilizia

APPENDICE D: Caratteristiche prestazionali di alcune tipologie di elementi vetrari impiegati nel settore dell’edilizia
APPENDICE A. SICUREZZA

A.1 FUNZIONI DEL VETRO DI SICUREZZA

Al vetro possono essere conferite, tra le altre, le seguenti funzioni:
- protezione dal rischio di ferite in caso di urti accidentali;
- protezione dal rischio che oggetti in caduta attraversino coperture vetrate;
- protezione dal rischio di caduta delle persone;
- protezione dagli atti vandalici e dall'effrazione;
- protezione da proiettili di armi da fuoco ed esplosione.

A.1.1 Norme di riferimento

Il vetro viene classificato prestazionalmente secondo le seguenti norme di test:

A.1.1.1 UNI EN 12600 – prova del pendolo – Metodo di prova di impatto e classificazione per il vetro piano

La norma indica i criteri per misurare la classe di resistenza e la modalità di rottura di una lastra (ricotta tipo A, stratificata tipo B, temprata tipo C) quando viene colpita da un corpo molle che simula l’impatto di un corpo umano.

In questo modo si classificano le lastre di vetro allo scopo di valutare il rischio di ferite da taglio e di determinare la loro capacità di contenimento, ovvero la resistenza all’attraversamento della lastra.

Di seguito si riportano alcune immagini relative alle prove di laboratorio finalizzate alla classificazione del vetro piano e uno schema esemplificativo che consente una rapida lettura delle prestazioni fornite dai vetri così classificati.

L’impattatore è costituito da un corpo d’acciaio con due pneumatici, con sezione circolare e battistrada piatto longitudinale, per una massa totale di 50 kg.
La prova consiste nel colpire per ogni altezza di caduta 4 provini, le cui dimensioni sono indicate nella norma, intelaiati sui quattro lati, a partire dall’altezza minima di caduta (secondo quanto riportato nello schema seguente) fino a quella della classe cui è ritenuto idoneo il materiale.

Tabella A.1 - Livelli di impatto

<table>
<thead>
<tr>
<th>Classificazione</th>
<th>Altezza di caduta (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>190</td>
</tr>
<tr>
<td>2</td>
<td>450</td>
</tr>
<tr>
<td>1</td>
<td>1’200</td>
</tr>
</tbody>
</table>

L’impattatore deve essere rilasciato con movimento pendolare e con velocità iniziale nulla. La direzione dell’impatto, che avverrà al centro del provino, dovrà essere ortogonale alla superficie. La prova si ritiene superata se tutti i campioni o non si rompono oppure si rompono in modo conforme a quanto indicato nella norma stessa.

La classificazione di un prodotto di vetro in base alle prestazioni deve essere indicata come segue: \(\alpha (\beta) \phi\), dove:

- \(\alpha\): è espresso in numeri da 1 a 3, ed è la classe dell’altezza massima di caduta alla quale il prodotto o non si è rotto oppure si è rotto nelle modalità del vetro temprato o del vetro stratificato;
- \(\beta\): è espresso con una lettera dalla A alla C, ed indica la modalità di rottura;
- \(\phi\): è espresso in numeri da 1 a 3, ed è la classe dell’altezza massima di caduta alla quale il prodotto o non si è rotto oppure si è rotto nelle modalità del vetro stratificato.

Per rendere più chiara e leggibile l’indicazione della classificazione prevista dalla norma UNI EN 12600 del prodotto vetrario \([\alpha (\beta) \phi]\), possiamo considerare che, a fronte di una determinata tipologia di vetro (\(\beta\)) su cui è eseguito il test, il primo numero (\(\alpha\)) individua la classe nella quale il campione
può ritenersi sicuro anche in caso di rottura, vale a dire non pericoloso, il secondo numero (ϕ) individua la classe nella quale il campione, oltre a non essere pericoloso, garantisce anche una capacità di contenimento eliminando di fatto il rischio di caduta nel vuoto dell’utilente.

La tabella riportata di seguito schematizza le indicazioni prima esaminate.

Tabella A.2 - Tabella riassuntiva UNI EN 12600

<table>
<thead>
<tr>
<th>Classificazione</th>
<th>Altezza massima a cui il campione non si rompe o si rompe come un vetro di sicurezza:</th>
<th>Modalità di rottura:</th>
<th>Altezza massima di caduta alla quale il campione non si rompe o si rompe come un vetro stratificato di sicurezza mantenendo la capacità di contenimento:</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>classe 1 = 1’200 mm</td>
<td>A = tipica del vetro float ricotto</td>
<td>classe 1 = 1’200 mm</td>
</tr>
<tr>
<td></td>
<td>classe 2 = 450 mm</td>
<td>B = tipica del vetro stratificato</td>
<td>classe 2 = 450 mm</td>
</tr>
<tr>
<td></td>
<td>classe 3 = 190 mm</td>
<td>C = tipica del vetro temprato</td>
<td>classe 3 = 190 mm</td>
</tr>
</tbody>
</table>
Esempi

Classificazione 2 (B) 2 – Caso vetro stratificato
Una serie di provini di vetro stratificato sono stati sottoposti a prova di impatto con i seguenti risultati:
- a 190 mm 3 provini non si sono rotti e 1 provino si è rotto in modo conforme a quanto indicato nella terza colonna della tabella precedente;
- a 450 mm tutti i 4 provini si sono rotti in modo conforme a quanto indicato nella terza colonna della tabella precedente;
- a 1’200 mm: 3 provini si sono rotti in modo conforme e 1 provino si è rotto in modo non conforme a quanto indicato nella terza colonna della tabella precedente.

Classificazione 1 (C) 3 – Caso vetro temprato
Una serie di provini di vetro di silicato soda-calcico temprato termicamente sono stati sottoposti a prova di impatto con i risultati seguenti:
- a 190 mm tutti i 4 provini non si sono rotti;
- a 450 mm tutti i 4 provini si sono rotti in modo conforme a quanto indicato nella prima colonna della tabella precedente;
- a 1’200 mm: tutti i 4 provini si sono rotti in modo conforme a quanto indicato nella prima colonna della tabella precedente.

Classificazione 1 (C) 0 - Caso vetro temprato
Una serie di provini di vetro di silicato soda-calcico temprato termicamente sono stati sottoposti a prova di impatto con i risultati seguenti:
- a 190 mm: 2 provini non si sono rotti e 2 provini si sono rotti in modo conforme a quanto indicato nella prima colonna della tabella precedente;
- a 450 mm: tutti i 4 provini si sono rotti in modo conforme a quanto indicato nella prima colonna della tabella precedente;
- a 1’200 mm: tutti i 4 provini si sono rotti in modo conforme a quanto indicato nella prima colonna della tabella precedente.
A.1.1.2 UNI EN 356 – vetro di sicurezza – prove e classificazione di resistenza contro l’attacco manuale

La norma indica i criteri per misurare la resistenza di una lastra quando questa:

- viene colpita da un corpo duro (sfera di acciaio da 4.11 Kg) che simula il lancio di un oggetto solido contro la vetrata (prestazione antivandalismo);
- viene attaccata con martello e ascia per simulare un tentativo di scasso/furto (prestazione antieffrazione).

In questo modo si classificano le lastre di vetro allo scopo di valutare la loro resistenza agli attacchi manuali.

Tabella A.3 - Tabella di classificazione per la resistenza delle vetrazioni di sicurezza

<table>
<thead>
<tr>
<th>Categoria di resistenza</th>
<th>Altezza di caduta (mm)</th>
<th>Numero totale di colpi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prova di caduta di un corpo duro</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P1A</td>
<td>1’500</td>
<td>3 in un triangolo</td>
</tr>
<tr>
<td>P2A</td>
<td>3’000</td>
<td>3 in un triangolo</td>
</tr>
<tr>
<td>P3A</td>
<td>6’000</td>
<td>3 in un triangolo</td>
</tr>
<tr>
<td>P4A</td>
<td>9’000</td>
<td>3 in un triangolo</td>
</tr>
<tr>
<td>P5A</td>
<td>9’000</td>
<td>3x3 in un triangolo (in questo caso la prova viene ripetuta per 3 volte a parità di altezza di caduta)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prova di resistenza all’attacco della mazza e dell’ascia</th>
</tr>
</thead>
<tbody>
<tr>
<td>P6B</td>
</tr>
<tr>
<td>P7B</td>
</tr>
<tr>
<td>P8B</td>
</tr>
</tbody>
</table>

Prova di caduta di un corpo duro Prova di resistenza all’attacco di mazza e ascia
A.1.1.3 UNI EN 1063 vetrate di sicurezza- classificazione e prove di resistenza ai proiettili
La norma indica i criteri per misurare la resistenza di una lastra quando questa:
- viene colpita da proiettili sparati da pistole e fucili (classi da BR1 a BR7);
- viene colpita da proiettili sparati da fucili a palla - Brenneke, (classi SG1 e SG2).
In questo modo si classificano le lastre di vetro allo scopo di valutare la loro resistenza all’impatto di proiettili.
Se vi è proiezione di schegge dalla faccia opposta a quella di impatto del proiettile, alle classi di cui sopra si aggiunge la lettera S, se non vi è proiezione, le lettere NS.

A.1.1.4 UNI EN 13541 prove e classificazione della resistenza alla pressione causata da esplosioni
La norma indica i criteri per misurare la resistenza di una lastra sottoposta all’onda di pressione generata da un’esplosione e classifica le lastre di vetro su quattro livelli di prestazione (classi da ER1 a ER4).

N.B. In tutti i casi, qualora si utilizzino lastre di composizione asimmetrica⁷, al fine di assicurare la prestazione dichiarata, occorre rispettare il *verso di posa* indicato dal produttore.

⁷ Lastra asimmetrica: Vedi Definizioni a pagina 10.
APPENDICE B. INDICAZIONI PER PREVENIRE IL RISCHIO DI ROTTURE DA SOLLECITAZIONE TERMICA

B.1 INDICAZIONI PER L’INSTALLAZIONE

B.1.1 Indicazioni per il montaggio

Al fine di ridurre il rischio di rottura del vetro a causa di carichi termici, è opportuno gestire la manipolazione, il trasporto e l’installazione delle vetrate isolanti in modo tale da ridurre al minimo le sollecitazioni. A tale scopo, vanno tenuti in considerazione, in particolare, i seguenti criteri:

B.1.1.1 Rischi di danneggiamento da movimentazione e stoccaggio del vetro
Dopo la verifica della qualità e dell’integrità della vetrata isolante fornita (a tale riguardo vedi anche UNI/TR 11404), occorre prestare attenzione alle successive movimentazioni, che potrebbero far aumentare i rischi di danneggiamento del vetro soprattutto sui bordi.
La rotture termica può avvenire anche prima che il vetro sia montato, nel caso in cui questo sia stoccato all’aperto e senza le necessarie protezioni dall’irraggiamento solare.
Una vetrata isolante che presenti difetti sui bordi non deve essere montata.

B.1.1.2 Rischi di danneggiamento da peso proprio superiore ai limiti ammissibili
Allo scopo di evitare i possibili rischi di rottura, il montaggio della vetrata isolante sul telaio deve essere effettuato utilizzando adeguati tasselli, nel rispetto delle necessarie tolleranze perimetrali.
Anche nel posizionamento e fissaggio del fermavetro deve essere prestata attenzione affinché non venga danneggiato il bordo del vetro.

B.1.1.3 Limitazione dell’irrigidimento del telaio
Dato l’aumento delle dimensioni e del peso delle vetrate attualmente richieste, al fine di garantire la funzionalità del sistema risulta impossibile evitare completamente un irrigidimento del telaio. Tale irrigidimento non deve tuttavia compromettere il requisito di base di cui al precedente criterio (2).

B.1.1.4 Montaggio di sole vetrate integrate e senza danneggiamenti preesistenti
Particolare attenzione va prestata ai bordi del vetro. I bordi che presentano lesioni, quali ad esempio le scheggiature causate da un’errata movimentazione delle lastre, possono, più facilmente, in seguito a sollecitazioni, innescare la rottura del vetro. Di conseguenza, è necessario prevenire il danneggiamento dei bordi in sede d’installazione, ed evitare il montaggio di vetrate isolanti danneggiate. Risulta evidente l’importanza dello stato del bordo nel vetro ai fini della resistenza alle sollecitazioni termiche e, conseguentemente, l’importanza del grado di finitura del bordo stesso in funzione del tipo di applicazione e del carico termico di progetto. È compito del progettista indicare il grado di finitura del bordo del vetro in funzione dei carichi complessivi previsti (statici, termici e climatici).

Nel caso di vetrate isolanti con lastre sfalsate di più di 2 mm, il posizionamento del vetro sul tassello non garantisce una distribuzione uniforme dei carichi ma induce sforzi aggiuntivi su una delle lastre; è quindi opportuno evitare di installare unità con lastre sfalsate e, in ogni caso, non oltre la misura indicata.
Se si curano questi aspetti, le sollecitazioni sul vetro diminuiscono. Tuttavia, ciò non autorizza a trascurare tutti gli altri elementi che possono dare origine a rotture per carico termico.

B.1.2 Montaggio a regola d’arte

Per il montaggio della vetrata isolante all’interno del telaio, vanno seguite le norme in vigore. Ulteriori indicazioni pratiche possono essere tratte dalla prEN 12488 e dalle “Linee guida per il montaggio delle vetrate isolanti” elaborate e promosse da Assovetro.

B.2 INDICAZIONI PER L’UTILIZZATORE

B.2.1 Istruzioni per l’uso

Al fine di evitare che la durabilità della vetrata sia compromessa da rotture inaspettate, è necessario evitare di imporre ulteriori carichi termici sui vetri per tutto il ciclo di vita del prodotto. Sfortunatamente, per i non addetti ai lavori è molto difficile valutare il carico termico massimo a cui può resistere il vetro in ogni singolo caso. Solo al momento della rottura diventa evidente che tali limiti sono stati superati. Di conseguenza, è importante adottare le precauzioni che permettano di evitare l’incremento delle sollecitazioni termiche sui vetri installati.

Di seguito sono indicate le principali cause potenziali.

B.2.1.1 Applicazione di coloranti, collanti o adesivi sul vetro

L’applicazione di adesivi e pitture, soprattutto di colore scuro, su vetri esposti all’irraggiamento solare diretto comporta sempre un riscaldamento differenziato della lastra, dando origine a sollecitazioni termiche che aumentano il rischio di rottura del vetro.

B.2.1.2 Applicazione di film di rivestimento sul vetro

L’allestimento del vetro mediante l’applicazione di rivestimenti adesivi (sia pure occasionali), anche al fine di ottenere una protezione solare aggiuntiva, o un messaggio pubblicitario, richiede prudenza. Molto spesso questi film, soprattutto se di colori scuri, comportano un notevole incremento dell’assorbimento delle radiazioni solari da parte del vetro e possono generare surriscaldamenti disomogenei che producono un aumento delle sollecitazioni termiche e, quindi, del rischio di rottura della lastra.

B.2.1.3 Proiezione di ombreggiamenti parziali

Se una lastra è in parte esposta alla luce solare diretta e in parte ombreggiata, si ha sempre un differenziale termico sul vetro. I vetri parzialmente ombreggiati presentano un riscaldamento disomogeneo che può divenire pericoloso. Le sollecitazioni che si vengono a creare sul vetro in seguito a tale fenomeno dipendono, tra le altre cose, dall’intensità della radiazione solare, dalla capacità del vetro di assorbire la radiazione e dalla suddivisione geometrica tra aree esposte alla luce solare ed aree ombreggiate. L’ombreggiamento parziale, nei limiti del possibile, deve essere evitato anche attraverso l’utilizzo oculato delle schermature esterne comunemente disponibili sul mercato. È bene prestare attenzione anche ad ombreggiamenti parziali che si creano per presenza di arredi o di piante.
B.2.1.4 Accumulo di calore sul vetro dovuto ad oscuranti interni
Quando si verifica un accumulo di calore direttamente sul vetro, si determina un incremento delle sollecitazioni termiche a carico del vetro stesso. Un esempio tipico di tale situazione è rappresentato dall’applicazione (in un tempo differito rispetto al montaggio) di un dispositivo oscurante all’interno di un locale al fine di migliorare la protezione solare e l’antiabbagliamento (ad esempio tendaggi pesanti, scuri o riflettenti). Se non si presta attenzione a garantire una ventilazione adeguata o una sufficiente distanza nell’applicazione del sistema oscurante dal vetro, l’irraggiamento solare potrebbe generare sollecitazioni termiche superiori al previsto e, di conseguenza, provocare la rottura del vetro.

B.2.1.5 Differenziali termici a causa di condizionatori, corpi riscaldanti, illuminanti o arredi imbottiti collocati a ridosso del vetro
Bisogna evitare che si verifichi un differenziale di calore provocato da radiatori, fissi o mobili, o da altri sistemi riscaldanti o raffreddanti posizionati troppo vicini al vetro. Anche nelle vetrate a filo pavimento si può generare un accumulo di calore nel caso in cui mobili imbottiti o oggetti di colore scuro (cuscini, vasellame, ecc.) siano collocati troppo vicino al vetro. In tutte queste situazioni, risulta difficile, se non impossibile, valutare il carico termico indotto che il vetro dovrà sopportare. In caso di dubbio si raccomanda quindi di evitare condizioni critiche come queste.

B.2.2 Consigli per la pulizia
Pulire il vetro senza generare sollecitazioni termiche. Anche il lavaggio del vetro deve avvenire in maniera tale da ridurre al minimo le sollecitazioni; va quindi evitato l’utilizzo di acqua eccessivamente calda (o eccessivamente fredda d’estate) e di vapore ad alta pressione per un tempo prolungato su di una zona circoscritta della lastra.
APPENDICE C. EFFICIENZA ENERGETICA NELL’EDILIZIA

C.1 RICHIAMI NORMATIVI

C.1.1 Prescrizioni prestazionali del sistema edificio - impianto

Il D. Lgs. 192/2005 e s.m.i. riguarda gli indici di prestazione energetica dell’edificio e le efficienze degli impianti per il riscaldamento e per il raffrescamento degli edifici, sia di nuova costruzione sia oggetto di interventi di ristrutturazione o di riqualificazione.

Come esposto al Paragrafo 4.3, il decreto 2015 “Requisiti minimi degli edifici” tratta i seguenti interventi:

a) edifici di nuova costruzione;

b) edifici esistenti sottoposti a ristrutturazioni importanti di primo livello (interventi sull’involucro edilizio con un’incidenza superiore al 50 per cento della superficie disperdente lorda complessiva dell’edificio, comprendenti anche la ristrutturazione dell’impianto termico);

c) edifici sottoposti a ristrutturazioni importanti di secondo livello (incidenza superiore al 25 per cento della superficie disperdente lorda);

d) edifici oggetto di riqualificazione energetica.

Le prescrizioni si differenziano, come schematizzato in tabella C.1, in base alla tipologia di intervento:

Tabella C.1 – Tipologie di interventi

<table>
<thead>
<tr>
<th>CASO 1)</th>
<th>CASO 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Edifici di Nuova costruzione</td>
<td>c) Ristrutturazioni importanti di 2° Livello</td>
</tr>
<tr>
<td>b) Ristrutturazioni importanti di 1° Livello</td>
<td>d) Riqualificazione energetica</td>
</tr>
</tbody>
</table>

CASO 1)

Nel caso di edifici di nuova costruzione e per le ristrutturazioni importanti di primo livello si deve procedere, in sede progettuale, alla determinazione dei seguenti valori prestazionali:

- coefficiente globale di scambio termico H'_T riferito all’intera porzione dell’involucro oggetto dell’intervento (parete verticale, copertura, solaio, serramenti, ecc.), il cui valore deve essere inferiore al valore massimo ammissibile riportato nella Tabella seguente, in funzione della zona climatica e del rapporto S/V:

Tabella C.2 – Valore massimo ammissibile del coefficiente H'_T [W/m²K] - Edifici di nuova costruzione o soggetti a ristrutturazioni importanti di primo livello

<table>
<thead>
<tr>
<th>Tipologia di intervento</th>
<th>ZONA CLIMATICA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nuova costruzione e ristrutturazioni importanti di 1° livello</td>
<td>A e B</td>
</tr>
<tr>
<td>Rapporto di Forma</td>
<td>0,58</td>
</tr>
<tr>
<td>$S/V\geq 0,7$</td>
<td>0,63</td>
</tr>
<tr>
<td>$0,7<S/V\geq 0,4$</td>
<td>0,80</td>
</tr>
<tr>
<td>$S/V<0,4$</td>
<td></td>
</tr>
</tbody>
</table>
- rapporto tra l’area solare estiva e l’area della superficie utile $A_{sol,est}/A_{sup\ utile}$, il cui valore deve risultare inferiore ai valori riportati nella seguente Tabella C.3.

Tabella C.3 – Valore massimo ammissibile del rapporto tra area solare equivalente estiva dei componenti finestrati e l’area della superficie utile $A_{sol,est}/A_{sup\ utile}$

<table>
<thead>
<tr>
<th>Categoria dell’edificio</th>
<th>Tutte le zone climatiche</th>
</tr>
</thead>
<tbody>
<tr>
<td>Categoria E.1 fatta eccezione per collegi, conventi, case di pena, caserme nonché per la categoria E.1(3)</td>
<td>≤ 0.030</td>
</tr>
<tr>
<td>Tutti gli altri edifici</td>
<td>≤ 0.040</td>
</tr>
</tbody>
</table>

- indici di prestazione termica per il riscaldamento ($E_{PH,nd}$), il raffrescamento ($E_{PC,nd}$) ed energetica globale ($E_{PG,nd}$), verificando che risultino inferiori ai valori dei corrispondenti indici limite calcolati per l’edificio di riferimento ($E_{PH,nd,limite}$, $E_{PC,nd,limite}$, $E_{PG,nd,limite}$);

- efficienze medie stagionali degli impianti di climatizzazione invernale (η_H), di produzione di acqua calda sanitaria (η_W), e di climatizzazione estiva(η_C), verificando che risultino superiori ai valori delle corrispondenti efficienze indicate per l’edificio di riferimento ($\eta_{H,limite}$, $\eta_{W,limite}$, $\eta_{C,limite}$).

I valori degli indici di prestazione termica e globale calcolati per l’edificio di riferimento ($E_{PH,nd,limite}$, $E_{PC,nd,limite}$, $E_{PG,nd,limite}$), nonché delle efficienze degli impianti ($\eta_{H,limite}$, $\eta_{W,limite}$, $\eta_{C,limite}$), sono ottenuti attribuendo, agli elementi tecnologici dell’edificio di riferimento (di cui al Paragrafo 4.3), i valori di trasmittanza di seguito riportati:

| Tabella C.4 – Trasmittanza termica U massima degli elementi edilizi dell’edificio di riferimento |
|---|--------------------------------|---|---|---|
| Zona climatica | PARETI | COPERTURE | PAVIMENTI | CHIUSURE TRASPARENTI |
| A e B | 0.45 | 0.43 | 0.38 | 0.35 | 0.46 | 0.44 | 3.2 | 3.0 |
| C | 0.38 | 0.34 | 0.36 | 0.33 | 0.40 | 0.38 | 2.4 | 2.2 |
| D | 0.34 | 0.29 | 0.30 | 0.26 | 0.32 | 0.29 | 2.0 | 1.8 |
| E | 0.30 | 0.26 | 0.25 | 0.22 | 0.30 | 0.26 | 1.8 | 1.4 |
| F | 0.28 | 0.24 | 0.23 | 0.20 | 0.28 | 0.24 | 1.5 | 1.1 |

CASO 2)
Per le ristrutturazioni importanti di secondo livello si deve verificare, in sede progettuale, il rispetto dei requisiti di trasmittanza termica, dettagliati al seguente Paragrafo C.1.2, si deve procedere alla determinazione del coefficiente globale di scambio termico $H’_T$ riferito all’involucro, secondo quanto indicato al Paragrafo 4.3.
Tabella C.5 – Valore massimo ammissibile del coefficiente H'_T [W/m²K] - Edifici sottoposti a ristrutturazioni importanti di secondo livello

<table>
<thead>
<tr>
<th>Tipologia di intervento</th>
<th>ZONA CLIMATICA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A e B</td>
</tr>
<tr>
<td>Ampliamenti e ristrutturazioni importanti di 2° livello per tutte le tipologie edilizie</td>
<td>0,73</td>
</tr>
</tbody>
</table>

Per gli interventi di riqualificazione energetica, si deve verificare, in sede progettuale, unicamente il rispetto dei requisiti di trasmissanza termica, dettagliati al Paragrafo C.1.2.

Nei casi di ristrutturazioni importanti di secondo livello e di riqualificazioni energetiche, per gli edifici dotati di impianto termico centralizzato (non a servizio di singola unità immobiliare residenziale o assimilata), anche in caso di installazione di nuove chiusure tecniche trasparenti, apribili e assimilabili, delimitanti il volume climatizzato verso l’esterno, ovvero verso ambienti non climatizzati, è d’obbligo l’installazione di valvole termostatiche.

C.1.2 Prescrizioni prestazionali termiche dei componenti dell’involucro

Le caratteristiche di isolamento dell’involucro edilizio determinano direttamente la dispersione energetica invernale e, di conseguenza, permettono di calcolare il fabbisogno di energia necessaria per il riscaldamento.

Il Decreto 2015 indica i valori di trasmissanza termica U, espressi in W/m² K, che devono essere considerati come i livelli minimi prestazionali dei componenti dell’involucro edilizio unicamente per gli interventi di ristrutturazione importante di 2° livello e di riqualificazione energetica [Caso 2]).

C.1.2.1 Valori di trasmissanza termica dell’involucro edilizio

I valori di trasmissanza massima ammissibile sono indicati nelle tabelle che seguono, tratte dal Decreto 2015; tali valori sono riferiti a due differenti periodi di applicazione:

- primo periodo: dal 1/10/2015 al 31/12/2018 per gli edifici pubblici e ad uso pubblico e dal 1/10/2015 al 31/12/2020 per tutti gli altri edifici;
- secondo periodo: dal 1/1/2019 per gli edifici pubblici e ad uso pubblico e dal 1/1/2021 per tutti gli altri edifici.

Tabella C.6 – Trasmittanze termiche U massime degli elementi edilizi - Edifici sottoposti a ristrutturazioni importanti di secondo livello o a riqualificazioni energetiche

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A e B</td>
<td>0.45</td>
<td>0.40</td>
<td>0.34</td>
<td>0.32</td>
<td>0.48</td>
<td>0.42</td>
<td>3.2</td>
<td>3.0</td>
</tr>
<tr>
<td>C</td>
<td>0.40</td>
<td>0.36</td>
<td>0.34</td>
<td>0.32</td>
<td>0.42</td>
<td>0.38</td>
<td>2.4</td>
<td>2.0</td>
</tr>
<tr>
<td>D</td>
<td>0.36</td>
<td>0.32</td>
<td>0.28</td>
<td>0.26</td>
<td>0.36</td>
<td>0.32</td>
<td>2.1</td>
<td>1.8</td>
</tr>
<tr>
<td>E</td>
<td>0.30</td>
<td>0.28</td>
<td>0.26</td>
<td>0.24</td>
<td>0.31</td>
<td>0.29</td>
<td>1.9</td>
<td>1.4</td>
</tr>
<tr>
<td>F</td>
<td>0.28</td>
<td>0.26</td>
<td>0.24</td>
<td>0.22</td>
<td>0.30</td>
<td>0.28</td>
<td>1.7</td>
<td>1.0</td>
</tr>
</tbody>
</table>
Si considera utile ricordare che, in caso di interventi di riqualificazione energetica dell’involucro opaco con isolamento termico dall’interno o in intercapedine, indipendentemente dall’entità della superficie coinvolta, i valori delle trasmissioni U riportati in Tabella C.6, tra cui anche quella del serramento, sono incrementati del 30%.

Per completezza dei riferimenti normativi, si ritiene, inoltre, opportuno richiamare anche il Decreto 25 luglio 2011, che introduce, per edifici della pubblica amministrazione, ulteriori valori di trasmissione del serramento U_w, qui di seguito riportati:

Tabella C.7 – Trasmissione U_w dei serramenti degli edifici della pubblica amministrazione

<table>
<thead>
<tr>
<th>ZONA CLIMATICA</th>
<th>TRASMITTANZA DEL SERRAMENTO (edifici pubblici e a uso pubblico) U_w (W/m²K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>3.7</td>
</tr>
<tr>
<td>B</td>
<td>2.4</td>
</tr>
<tr>
<td>C</td>
<td>2.1</td>
</tr>
<tr>
<td>D</td>
<td>2.0</td>
</tr>
<tr>
<td>E</td>
<td>1.8</td>
</tr>
<tr>
<td>F</td>
<td>1.6</td>
</tr>
</tbody>
</table>

C.1.2.2 Valori di inerzia termica dell’involucro edilizio

Limitatamente agli edifici di nuova costruzione o soggetti a ristrutturazioni importanti di primo livello, per tutte le categorie di edifici, così come classificati in base alla destinazione d’uso dall’art. 3 del D.P.R. 412/93, ad eccezione delle categorie E.5, E.6, E.7 ed E.8, in tutte le zone climatiche, esclusa la zona climatica F, per le località in cui il valore medio mensile dell’irradianza sul piano orizzontale nel mese di massima insolazione $I_{m,s} \geq 290$ W/m² è prescritto che:

- per le pareti opache verticali ad eccezione di quelle nel quadrante Nord-ovest, Nord-est, la massa superficiale M_s delle pareti opache compresa la malta dei giunti ed esclusi gli intonaci, sia > 230 Kg/m² o in alternativa che il valore del modulo della trasmittanza termica periodica (Y_{ie}) sia inferiore a 0.10 W/m² K;

- per tutte le altre pareti opache orizzontali o inclinate, il valore del modulo della trasmittanza termica periodica (Y_{ie}) sia inferiore a 0.18 W/m² K.

Gli effetti positivi che si ottengono con il rispetto del valore di massa superficiale o trasmittanza periodica delle pareti opache, possono essere raggiunti, in alternativa, utilizzando tecniche e materiali anche innovativi, ovvero coperture a verde che permettano di contenere le oscillazioni di temperatura degli ambienti in funzione dell’irraggiamento solare. In tal caso deve essere prodotta una adeguata documentazione e certificazione che ne attesti l’equivalenza con le precedenti soluzioni costruttive.

C.1.3 Ambito di applicabilità

L’obbligo di rispettare i limiti di trasmissione termica U si applica ai seguenti casi:
Tabella C.8 - Ambito di applicazione del D. Lgs. 192/05 e s.m.i. – ex Allegato 1 del Decreto 2015

| Edifici di nuova costruzione o demoliti e ricostruiti | Art. 1.3 c.1
| Art. 1.3 c.1, lett. a |
Ampliamenti con volume >15% del volume dell’edificio stesso o comunque superiore a 500 m³	Art. 1.3 c.1, lett. b
Ristrutturazioni importanti di primo livello	Art. 1.4.1 c. 3, lett. a
Ristrutturazioni importanti di secondo livello	Art. 1.4.1 c. 3, lett. b
Riqualificazioni energetiche di un edificio per tutti i casi diversi dai due sopra descritti.	Art. 1.4.2 c. 1
Ristrutturazione dell’impianto/i di riscaldamento, di raffrescamento e produzione dell’acqua calda sanitaria o installazione di nuovo/i impianto/i per i predetti servizi	Art. 6.1 Tabella 4, penultima riga
Sostituzione del solo generatore di calore e/o altri impianti tecnici per il soddisfacimento dei servizi dell’edificio	Art. 6.1 Tabella 4, ultima riga

Tabella C.9 - Categorie di edifici escluse dall'applicazione del D. Lgs. 192/2005 e s.m.i.

Agli edifici ricadenti nell'ambito della disciplina del Codice dei beni culturali e del paesaggio (D. Lgs. 42/2004)	Art. 3 com. 3, lett. a
Agli edifici industriali e artigianali quando gli ambienti sono riscaldati per esigenze del processo produttivo o utilizzando reflui energetici del processo produttivo non altrimenti utilizzabili	Art. 3 com. 3, lett. b
Agli edifici rurali non residenziali sprovvisti di impianti di climatizzazione	Art. 3 com. 3, lett. c
Ai fabbricati isolati con una superficie utile totale inferiore a 50 metri quadrati	Art. 3 com. 3, lett. d
Agli edifici il cui utilizzo standard non prevede l'installazione e l'impiego di sistemi tecnici di climatizzazione, quali box, cantine, autorimesse, parcheggi multipiano, depositi, strutture stagionali a protezione degli impianti sportivi	Art. 3 com. 3, lett. e
Agli edifici adibiti a luoghi di culto e allo svolgimento di attività religiose	Art. 3 com. 3, lett. f

C.1.3.1 I documenti da consegnare

In tutti i casi, contestualmente alla richiesta di Permesso di costruire, o Denuncia di Inizio Attività, comunque denominato, deve essere stata depositata la relazione tecnica (ai sensi del decreto 26 giugno 2015 recante “Schemi e modalità di riferimento per la compilazione della relazione tecnica di progetto ai fini dell’applicazione delle prescrizioni e dei requisiti minimi di prestazione energetica negli edifici”, di seguito Decreto “Schema relazione”) contenente calcoli e valutazioni energetiche. I metodi di calcolo sono quelli stabiliti dalle norme specifiche tecniche UNI TS 11300, oppure da apposite norme regionali, laddove adottate (per es. in Lombardia).
A conclusione dei lavori la conformità al progetto deve essere asseverata dal Direttore dei Lavori e presentata al Comune insieme alla dichiarazione di fine lavori.

A fine lavori, nei soli casi indicati dalle ultime Linee Guida nazionali e nelle Regioni che non hanno ancora legislato al riguardo, è rilasciato dal professionista abilitato anche l’Attestato di Qualificazione Energetica (AQE), insieme all’Attestato di Prestazione Energetica (APE), che però deve essere rilasciato da un soggetto terzo in tutti i casi indicati in tabella C.10. Nelle Regioni che hanno già predisposto il rilascio della certificazione energetica, invece, è necessario solo il rilascio dell’APE da parte di un professionista iscritto regolarmente agli elenchi regionali.

L’AQE è rilasciato, secondo quanto indicato dalle Linee Guida nazionali, dallo stesso Direttore dei Lavori o da un tecnico abilitato, non necessariamente estraneo all’opera.

In assenza dei documenti suddetti il Comune non può accettare la dichiarazione di fine lavori.

Tabella C.10 - Elenco dei documenti da presentare al Comune

<table>
<thead>
<tr>
<th>Descrizione dei casi</th>
<th>ASSEV. (decreto 2015*)</th>
<th>AQE DL (D. Lgs. 192/05)</th>
<th>APE Certificatore (Linee Guida)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edifici di nuova costruzione o demoliti e ricostruiti</td>
<td>Art.1.3 c.1</td>
<td>Sì</td>
<td>Sì</td>
</tr>
<tr>
<td>Ampliamenti con volume >15% del volume dell’edificio stesso o comunque superiore a 500 m³</td>
<td>Art.1.3 c.1, lett. b</td>
<td>Sì</td>
<td>Sì</td>
</tr>
<tr>
<td>Ristrutturazioni importanti di primo livello</td>
<td>Art.1.4.1 c. 3, lett. a</td>
<td>Sì</td>
<td>Sì</td>
</tr>
<tr>
<td>Ristrutturazioni importanti di secondo livello</td>
<td>Art.1.4.1 c. 3, lett. b</td>
<td>Sì</td>
<td>Sì</td>
</tr>
<tr>
<td>Riqualificazioni energetiche di un edificio per tutti i casi diversi dai due sopra descritti.</td>
<td>Art.1.4.2 c. 1</td>
<td>Sì</td>
<td>Sì</td>
</tr>
<tr>
<td>Ristrutturazione dell’impianto/i di riscaldamento, di raffrescamento e produzione dell’acqua calda sanitaria o installazione di nuovo/i impianto/i per i predetti servizi</td>
<td>Tabella 4, penultima riga</td>
<td>Sì</td>
<td>NO</td>
</tr>
<tr>
<td>Sostituzione del solo generatore di calore e/o altri impianti tecnici per il soddisfacimento dei servizi dell’edificio</td>
<td>Tabella 4, ultima riga</td>
<td>Sì</td>
<td>NO</td>
</tr>
</tbody>
</table>

* Decreto “Schema relazione”.

70
Il Decreto Legge n. 112/08, convertito con legge 6 agosto 2008 n. 133, ha abolito l’obbligo di allegare la certificazione energetica ai fini della validità dell’atto di compravendita di immobili esistenti e dei contratti di locazione; è opportuno precisare che, tuttavia, resta in vigore l’obbligo della consegna all’acquirente del certificato energetico dell’immobile.

Entro 15 giorni dalla data di consegna al richiedente dell’APE, il certificatore deve trasmettere copia del certificato alla Regione o alla Provincia autonoma competente per territorio.

Il rilascio di AQE o APE non veritieri contempla a carico del progettista, del Direttore dei Lavori e del certificatore che li abbia sottoscritti, ciascuno per la propria responsabilità, l’applicazione di sanzioni amministrative e/o provvedimenti penali.

C.2 LE VERIFICHE E CONTROLLI DEL PROGETTO ALL’INTERNO DEI COMUNI

Il ruolo di controllo dell'Amministrazione comunale era già ben definito dalla legge 10/1991 che, all'articolo 33, recitava testualmente:

“(…)3. In caso di accertamento di difformità in corso d'opera, il sindaco ordina la sospensione dei lavori.

4. In caso di accertamento di difformità su opere terminate il Sindaco ordina, a carico del proprietario, le modifiche necessarie per adeguare l'edificio alle caratteristiche previste dalla presente legge.

5. Nei casi previsti dai commi 3 e 4 il Sindaco informa il Prefetto per la irrogazione delle sanzioni di cui all'articolo 34 (…)”.

Verifiche e controlli possono essere condotti seguendo uno schema semplice come quello proposto nella Figura C.1.

Gli schemi di “Verifica del progetto” e “Verifica del cantiere”, riportati in allegato al presente documento, potrebbero essere adottati dai Comuni che, dopo aver introdotto il nuovo Regolamento edilizio, ritenessero importante procedere con un'azione di monitoraggio sulla effettiva applicazione delle nuove regole, oppure per rispondere alle nuove direttive indicate nelle Linee Guida Nazionali per la certificazione energetica degli edifici (D.M. 26 giugno 2009, come adeguato dal Decreto “Schema relazione”).

La procedura di controllo può prevedere uno o due tipi di verifica:

- il primo sulla base della documentazione di progetto (vedi scheda “Verifica del progetto” – allegato 2);
- il secondo durante le fasi di cantiere (vedi scheda “Verifica del cantiere” – allegato 3).

Il tecnico responsabile della redazione della relazione di calcolo del fabbisogno energetico dell'edificio (ai sensi del Decreto “Schema relazione”) compila la scheda “Verifica del progetto” (che potrà essere resa scaricabile dal sito del Comune, oppure direttamente on-line), la stampa, la firma e la consegna unitamente alla richiesta del permesso di costruire (PC) o denuncia di inizio attività (DIA), comunque denominato.

L’Ufficio comunale competente controlla la presenza della scheda “Verifica del progetto” (che costituisce un primo filtro di controllo semplificato) nei documenti presentati e verifica che non vi siano indicazioni palesi di “non conformità” rispetto al Regolamento edilizio e alla normativa vigente.
Un approfondimento successivo potrà essere fatto confrontando i valori della scheda “Verifica del progetto” con quelli presenti sulla relazione (prodotta ai sensi del Decreto “Schema relazione”). Nel caso siano presenti difformità, il Comune chiederà al tecnico integrazioni scritte con le motivazioni (come, ad esempio, nel caso di edificio esistente, la mancata applicazione dei limiti di trasmittanza per motivi estetici di mantenimento del "filo" della facciata).

Se le motivazioni saranno ritenute valide, si procederà al rilascio del titolo abilitativo, altrimenti si respingerà la DIA o il PC finché la scheda “Verifica del progetto” non riporterà le conformità adeguate.

Nel caso di Segnalazione Certificata di Inizio Attività (SCIA) in materia edilizia, l’amministrazione competente, accertata la carenza dei requisiti e dei presupposti previsti dalla legge 7 agosto 1990, n. 241, adotta, nel termine di trenta giorni dal ricevimento della segnalazione, provvedimenti di divieto di prosecuzione dell’attività, salvo che l’interessato provveda a conformare l’attività ed i suoi effetti entro un termine fissato dall’amministrazione stessa.

La scheda “Verifica del progetto”, riportata a titolo meramente esemplificativo in Allegato 2, consente un primo semplificato controllo di coerenza; la scheda potrà essere redatta in forma cartacea o in formato digitale (con la possibilità di una verifica dei parametri immessi in tempo reale). Non si tratta, evidentemente, di un ulteriore documento da compilare, ma, piuttosto, di una rapida modalità per verificare i parametri, soprattutto quelli cogenti, che impone il Regolamento edilizio e che il progettista è chiamato a rispettare.

E’ chiaro che ogni Comune potrà personalizzare l’elenco degli elementi progettuali soggetti a verifica in base al proprio regolamento edilizio.
Figura C.1 – I ruoli e la gestione del controllo e verifica dei progetti

Progettista / DL / Committenza

Progettista: elaborazione progetto

Committenza: nomina il Certificatore

DL: a fine lavori consegna la scheda Verifica del cantiere

DL: collauda le opere, rilascia Dichiarazione asseverata di rispondenza del progettato al realizzato, redige l’Attestato di Qualificazione Energetica (AQE)

Committenza: riceve la Dichiarazione asseverata di rispondenza del progettato al realizzato, l’Attestato di Qualificazione Energetica e l’Attestato di Prestazione Energetica (APE)

Committenza: richiede il Certificato di agibilità

Certificatore

Controlla documentazione e stabilisce la classe

Effettua i sopralluoghi in cantiere

Verifica preliminare di progetto mediante scheda Verifica del progetto

Consegna progetto e relazione tecnica (ai sensi del Decreto “Schema relazione”) e scheda Verifica del progetto

Verifiche in cantiere con Scheda Verifica del cantiere

Rilascio titolo abilitativo (DIA, SCIA o PC)

Redige l’Attestato di Prestazione Energetica (APE), lo consegna alla Committenza e ne invia copia alla Regione / Provincia Autonoma

L’Ufficio competente rilascia il Certificato di agibilità

L’Ufficio competente effettua i controlli entro 5 anni della fine dei lavori

Comune

Verifica del progetto

Rilascio titolo abilitativo

Verifica del cantiere

Verifica del progetto

Ordina la sospensione dei lavori

Applica le sanzioni previste
C.2.1 La verifica dei progetti

Per il conseguimento del titolo abilitativo, il progettista deve consegnare all'Ufficio tecnico comunale (o ad altro Ufficio competente dell’Amministrazione) la scheda “Verifica del progetto” (allegato 2) insieme al progetto dell'edificio.

Sia nel caso di DIA o SCIA che di PC, è consegnata contestualmente anche la relazione tecnica predisposta secondo lo schema stabilito dalla legislazione vigente (nazionale o regionale), con allegati i disegni tecnici di supporto e certificazioni inerenti le prestazioni energetiche dei componenti utilizzati (relazione ai sensi del Decreto “Schema relazione”).

Primo responsabile della rispondenza tra progetto e realizzazione è il Direttore dei Lavori (DL). E’ chiaro che qualora vi fossero in corso d’opera modifiche al progetto oppure variazioni dei materiali impiegati, in particolare quelli che potrebbero influire sul bilancio energetico (isolanti termici, serramenti ecc.), sarà necessario aggiornare il calcolo energetico e, quindi, effettuare la rielaborazione di una nuova relazione di calcolo attestante che le variazioni apportate non modifichino la rispondenza del progetto alle norme di legge.

Ai tecnici comunali non spetta alcuna verifica dei risultati del calcolo energetico, ma una verifica della coerenza generale della documentazione presentata, che può avvenire attraverso semplici procedure di controllo, tra cui per esempio:

- coerenza tra la volumetria indicata nella relazione tecnica e quella indicata nella richiesta di PC o DIA, comunque denominato;
- coerenza tra la relazione tecnica e gli elaborati grafici (ogni locale per il quale è stato eseguito il calcolo termico deve poter essere individuato nella planimetria di supporto);
- coerenza tra gli spessori dei materiali isolanti utilizzati e la trasmittanza delle diverse strutture;
- presenza della certificazione relativa alle prestazione termiche dei componenti edilizi e in particolare dei materiali isolanti e dei serramenti;
- presenza di disegni di dettaglio relativamente ai ponti termici;
- presenza di elaborati grafici con il posizionamento degli impianti alimentati a fonti rinnovabili;
- presenza di relazioni tecniche relative al rispetto dei requisiti acustici, alle caratteristiche delle serre (se previste), al dimensionamento della vasca di raccolta dell'acqua piovana (se prevista), all'inerzia termica, e a tutte quelle regole specifiche che necessitano di un approfondimento tecnico puntuale.

Una volta consegnata la scheda di progetto così definita, il direttore dei lavori prima dell’ultimazione dell’opera, consegnerà la scheda di “Verifica del cantiere” (allegato 3) che sarà utile all’Ufficio comunale competente per poter procedere al controllo dell’opera.

Le Schede “Verifica del progetto” e “Verifica del cantiere” sintetizzano in poche pagine tutti gli elementi che caratterizzano il progetto dal punto di vista energetico.

Le ultime due colonne a destra dovranno essere compilate dall'Ufficio comunale competente sia nelle verifiche di progetto che nelle verifiche di cantiere. I dati contenuti nelle schede forzano in questo modo il progettista a inserire delle informazioni che, all'interno della relazione tecnica, sarebbero difficili da reperire.

Per velocizzare il controllo dei valori inseriti nelle schede, può essere adoperato un foglio di calcolo che effettui automaticamente le verifiche di coerenza.

Una volta tarati i criteri, la stessa scheda “Verifica di progetto” potrebbe essere completamente implementata su un foglio elettronico, così che lo stesso progettista possa verificare in tempo reale le
incorrenze. La stessa potrà essere utilizzare dall’Ufficio tecnico, o altro Ufficio comunale competente, per eventuali controlli in corso d’opera.

La scheda “Verifica del progetto”, quindi, rappresenta un vero e proprio filtro di coerenza che il progettista è chiamato a rispettare. In casi di dubbio sarà comunque necessario fare riferimento ai dati contenuti nella relazione tecnica, oppure contattare il progettista per ulteriori chiarimenti o richiesta di ulteriori documenti.

L'utilizzo della scheda “Verifica del progetto” potrà essere prevista nell’elenco dei documenti da presentare per l'approvazione in Commissione edilizia o per la DIA.

La versione corretta e definitiva della scheda “Verifica del progetto” potrà essere implementata in un database informatico e archiviata insieme alle pratiche di relative al titolo abilitativo richiesto.

C.2.2 La verifica in cantiere

L’Ufficio comunale competente, anche avvalendosi da esperti esterni, può effettuare delle verifiche durante le fasi di cantiere, avvalendosi della scheda “Verifica del cantiere” già predisposta dal Direttore dei Lavori. Nel caso si riscontrino delle differenze il tecnico può chiedere la sospensione dei lavori.

La suddetta verifica dovrà anche essere effettuata in parallelo dal Soggetto certificatore, così come predisposto dalle ultime Linee Guida Nazionali per la certificazione energetica degli edifici (D.M. 26 giugno 2009, come adeguato dal decreto 26 giugno 2015 recante le Linee Guida Nazionali) e come previsto nelle Regioni che hanno già legiferato.

Il Comune ha comunque la facoltà di effettuare verifiche in cantiere anche prima dell'ultimazione dei lavori, utilizzando la scheda di “Verifica del progetto”; qualora dovessero essere riscontrate differenze nell’esecuzione rispetto alla progettazione, l’Ufficio comunale competente provvederà a diffidare la Direzione Lavori ad attenersi al progetto depositato.

Nel caso di controllo successivo alla ultimazione dei lavori, il Comune potrà richiedere la consegna della scheda di “Verifica del cantiere”; in assenza di modifiche in corso d'opera, essa dovrà necessariamente essere identica alla scheda “Verifica del progetto”.

Insieeme alla scheda di “Verifica del cantiere” la Direzione Lavori dovrà produrre e consegnare al Committente la Dichiarazione asseverata di rispondenza del progettato al realizzato, oltre all’Attestato di Qualificazione Energetica (AQE) ai sensi del decreto 26 giugno 2015 recante le Linee Guida Nazionali.

La Committenza dovrà quindi consegnare all’Ufficio comunale competente l’Attestato di Prestazione Energetica (APE) redatto da un Certificatore energetico indipendente, il quale provvederà anche ad inviarne - entro 15 giorni dalla consegna al richiedente - copia alla Regione o alla Provincia Autonoma competente per territorio.

Il rilascio dell'Attestato di Prestazione Energetica consentirà, a questo punto, l’emanazione del Certificato di agibilità da parte dell’Amministrazione comunale.

Entro cinque anni dalla data di comunicazione di avvenuta ultimazione dei lavori, infine, il Comune potrà effettuare eventuali controlli sull’immobile, al fine di riscontrare la correttezza della esecuzione e, se del caso, provvedere all'applicazione delle sanzioni previste. Ovviamente, qualora il Comune abbia effettuato le verifiche del cantiere in corso d'opera potrà evitare il controllo successivo sull’immobile ultimato.
APPENDICE D. CARATTERISTICHE PRESTAZIONALI DI ALCUNE TIPOLOGIE DI ELEMENTI VETRARI IMPIEGATI NEL SETTORE DELL’EDILIZIA

D.1 INTRODUZIONE

Nella presente Appendice vengono illustrate le principali tipologie di prodotti disponibili in commercio, riportando in schede esemplificative dedicate le caratteristiche prestazionali di ciascuna tipologia. La finalità di tale rassegna è quella di evidenziare il variare delle caratteristiche prestazionali con il variare della composizione e della struttura della vetrata. Per tale motivo, nella scheda riferita alla singola tipologia di vetrata sono state indicate, oltre alle prestazioni termiche della vetrata bassoemissiva, quelle della stessa vetrata con funzione anche selettiva e ciò per un’informazione più ampia e dettagliata delle variazioni di prestazione.

D.2 SOMMARIO:

1 - Vetro stratificato di sicurezza
2 - Vetro di sicurezza temprato termicamente
3 - Vetrata isolante bassoemissiva
4 - Vetrata isolante bassoemissiva e selettiva
5 - Vetrata isolante bassoemissiva con un vetro temprato di sicurezza
6 - Vetrata isolante bassoemissiva e selettiva con un vetro temprato di sicurezza
7 - Vetrata isolante bassoemissiva tripla con un vetro temprato di sicurezza
8 - Vetrata isolante bassoemissiva e selettiva tripla con un vetro temprato di sicurezza
9 - Vetrata isolante bassoemissiva con un vetro stratificato di sicurezza
10 - Vetrata isolante bassoemissiva e selettiva con un vetro stratificato di sicurezza
11 - Vetrata isolante bassoemissiva tripla con un vetro stratificato di sicurezza
12 - Vetrata isolante bassoemissiva e selettiva tripla con un vetro stratificato di sicurezza
13 - Vetrata isolante acustica con un vetro stratificato di sicurezza
14 - Vetrata isolante acustica con due vetri stratificati di sicurezza

LEGENDA

Peso...\(P (\text{Kg/m}^2) \)
Trasmissione luminosa...\(\tau_v (\%) \)
Riflessione luminosa...\(\rho_v (\%) \)
Trasmittanza termica della vetrata..............................\(U_g (W/\text{m}^2 \text{K}) \)
Fattore solare..\(g (\%) \)
Assorbimento energetico...\(\alpha_e (\%) \)
Indice riduzione acustica ponderata......................\(R_w (\text{dB}) \)
Prestazione non determinata....................................\(\text{NPD} \)
D.3 ESEMPI APPLICATIVI - PREMESSA

Il dimensionamento dell’elemento vettrario per l’impiego in edilizia deve avvenire nel rispetto dei valori di legge in materia di isolamento termico, acustico e di sicurezza in funzione dei requisiti prestazionali richiesti dalla specifica applicazione.

Scopo della presente Appendice è quello di fornire al progettista un agile strumento d’orientamento nell’approccio metodologico del problema, senza voler rappresentare uno strumento progettuale.

Relativamente al tipo di vetro utilizzato, al suo spessore ed all’intercapedine scelti, la vetrata isolante può essere realizzata con elementi diversi da quelli indicati nelle tabelle e/o con prodotti di sicurezza temprati o stratificati; la corretta applicazione di questi ultimi può desumersi unicamente da un’attenta lettura della Norma UNI 7697:2015.

Per quanto riguarda i gas di riempimento, la vetrata può contenere nell’intercapedine gas nobili, come argon e krypton, i quali migliorano sensibilmente le prestazioni di isolamento termico.

Introducendo il vetro stratificato nella composizione di una vetrata isolante, oltre ad indubbi vantaggi di sicurezza per l’utenza, si ottengono risultati di fonoisolamento tendenzialmente migliori, rispetto alla vetrata isolante con semplici vetri float.

I valori di R_w (dB) riportati sono indicativi e cautelativi, e possono essere presi come riferimento in assenza di specifici certificati e/o misure sperimentali.

Il fabbricante deve dichiarare la prestazione di almeno una delle caratteristiche essenziali, nel rispetto del Regolamento (UE) N. 305/2011 e in aderenza con le richieste della commissione d’ordine, per il prodotto fornito, contestualmente all’apposizione della Marcatura CE.

In accordo con il decreto del Ministero dell’Industria del Commercio e dell’Artigianato del 2 aprile 1998, recante “Modalità di certificazione delle caratteristiche e delle prestazioni energetiche degli edifici e degli impianti ad essi connessi”, pubblicato sulla G.U. n. 102 del 5 maggio 1998, per i vetri isolanti, i vetri a controllo solare e i vetri a bassa emissività è obbligatorio dichiarare i valori di trasmittanza termica e trasmissione luminosa (cui si aggiunge, per i serramenti, anche la permeabilità all’aria). Oltre a questi valori, per ottemperare agli eventuali (in funzione dell’orientamento delle finestre) obblighi previsti dal Decreto 2015, anche il fattore solare deve essere dichiarato, al fine di poter calcolare il valore di g_{gl+sh}, di cui al Paragrafo 4.4.1.

Nel caso in cui il produttore sia titolare del Marchio CSICERT UNI sui vetri per l’edilizia, l’acquirente del prodotto ha la certezza che le caratteristiche prestazionali e di durabilità siano verificate da un Ente di certificazione accreditato indipendente (CSI) e da laboratorio notificato quale è la Stazione Sperimentale del Vetro, attraverso controlli iniziali e periodici, atti a verificare la continua conformità rispetto alle normative europee di riferimento (Vedi Capitolo 10).

Detti controlli comprendono verifiche sulla linea di produzione e prove su campioni prelevati direttamente in azienda.
D.4 ESEMPI APPLICATIVI - SCHEDE PRESTAZIONALI

1 - VETRO STRATIFICATO DI SICUREZZA

- Float chiaro 4 mm
- Polivinilbutirrale 0.76 mm
- Float chiaro 4 mm

<table>
<thead>
<tr>
<th>Caratteristiche dimensionali</th>
<th>Caratteristiche ottiche</th>
<th>Caratteristiche energetiche</th>
<th>Isolamento acustico</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spessore (mm)</td>
<td>Peso (Kg/m²)</td>
<td>τ_v (%</td>
<td>ρ_v (%</td>
</tr>
<tr>
<td>8.8</td>
<td>20</td>
<td>87</td>
<td>8</td>
</tr>
</tbody>
</table>

| | EN 410 | EN 410 | EN 410 | EN 410 | EN 717-1 |

* Vedi norma UNI EN 12758

<table>
<thead>
<tr>
<th>Caratteristiche di sicurezza</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prova di resistenza</td>
</tr>
<tr>
<td>Impatto secondo prova del pendolo</td>
</tr>
<tr>
<td>Resistenza all'effrazione</td>
</tr>
</tbody>
</table>

N.B. vedi nota in premessa
2 - VETRO DI SICUREZZA TEMPRATO TERMICAMENTE

- Float chiaro 8 mm temprato termicamente

<table>
<thead>
<tr>
<th>Caratteristiche dimensionali</th>
<th>Caratteristiche ottiche</th>
<th>Caratteristiche energetiche</th>
<th>Isolamento acustico</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spessore (mm)</td>
<td>Peso (Kg/m²)</td>
<td>τ_v (%)</td>
<td>ρ_v (%)</td>
</tr>
<tr>
<td>8</td>
<td>20</td>
<td>87</td>
<td>8</td>
</tr>
<tr>
<td>EN 410</td>
<td>EN 410</td>
<td>EN 410</td>
<td>EN 410</td>
</tr>
</tbody>
</table>

* Vedi norma UNI EN 12758

Caratteristiche di sicurezza

<table>
<thead>
<tr>
<th>Prova di resistenza</th>
<th>Classe</th>
<th>Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>Impatto secondo prova del pendolo</td>
<td>1(C)2</td>
<td>UNI EN 12600</td>
</tr>
</tbody>
</table>

N.B. vedi nota in premessa
3 - VETRATA ISOLANTE BASSOEMISSIVA

- Float chiaro 4 mm
- Intercapedine (vedi tabella per dimensioni e gas di riempimento)
- Float bassoemissivo 4 mm (*coating in faccia 3*)

<table>
<thead>
<tr>
<th>Peso</th>
<th>Caratteristiche ottiche</th>
<th>Caratteristiche energetiche</th>
<th>Isolamento acustico</th>
<th>Caratteristiche di sicurezza</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Kg/m²)</td>
<td>τv (%)</td>
<td>ρv (%)</td>
<td>G (%)</td>
<td>αe (%)</td>
</tr>
<tr>
<td>20</td>
<td>79</td>
<td>13</td>
<td>61</td>
<td>21</td>
</tr>
<tr>
<td>EN 410</td>
<td>EN 410</td>
<td>EN 410</td>
<td>EN 410</td>
<td>EN 717-1</td>
</tr>
</tbody>
</table>

* Vedi norma UNI EN 12758 **Questa vetrata, così come l’analogo prodotto al seguente punto 4, non garantisce nessuna delle condizioni di sicurezza richieste dalla norma UNI 7697

Trasmissione termica in funzione di intercapedine e gas

<table>
<thead>
<tr>
<th>Gas di riempimento</th>
<th>Spessore (nominale) intercapedine (mm)</th>
<th>Ug (W/m²K)</th>
<th>Spessore totale vetrata (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aria</td>
<td>6</td>
<td>2.5</td>
<td>14</td>
</tr>
<tr>
<td>Aria</td>
<td>9</td>
<td>1.9</td>
<td>17</td>
</tr>
<tr>
<td>Aria</td>
<td>12</td>
<td>1.6</td>
<td>20</td>
</tr>
<tr>
<td>Aria</td>
<td>16</td>
<td>1.4</td>
<td>24</td>
</tr>
<tr>
<td>Argon (90%)</td>
<td>6</td>
<td>2.0</td>
<td>14</td>
</tr>
<tr>
<td>Argon (90%)</td>
<td>9</td>
<td>1.6</td>
<td>17</td>
</tr>
<tr>
<td>Argon (90%)</td>
<td>12</td>
<td>1.3</td>
<td>20</td>
</tr>
<tr>
<td>Argon (90%)</td>
<td>16</td>
<td>1.1</td>
<td>24</td>
</tr>
</tbody>
</table>

4 - VETRATA ISOLANTE BASSOEMISSIVA E SELETTIVA

La vetrata isolante, oltre a contenere un coating con prestazioni bassoemissive, può essere composta con coating aventi prestazioni selettive diverse in ragione della tipologia del coating impiegato, come esemplificato nella tabella seguente.

A titolo meramente indicativo e con la sola finalità di illustrare tali variazioni, viene proposta una vetrata di composizione:

- Float chiaro bassoemissivo e selettivo 4 mm (*coating in faccia 2*)
- Intercapedine 16 mm argon (90%)
- Float chiaro 4 mm

In questo caso, la vetrata ha le proprietà indicate nella tabella seguente, ferme restando le prestazioni acustiche indicate per l’analogo prodotto di cui al precedente punto 3; resta inteso che anche questa vetrata non garantisce nessuna delle condizioni di sicurezza richieste dalla norma UNI 7697.

<table>
<thead>
<tr>
<th>Peso</th>
<th>Caratteristiche ottiche</th>
<th>Caratteristiche energetiche</th>
<th>Selettività</th>
<th>Trasmissione termica</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Kg/m²)</td>
<td>τv (%)</td>
<td>ρv (%)</td>
<td>G (%)</td>
<td>αe (%)</td>
</tr>
<tr>
<td>20</td>
<td>67</td>
<td>24</td>
<td>45</td>
<td>16</td>
</tr>
<tr>
<td>72</td>
<td>10</td>
<td>43</td>
<td>27</td>
<td>1.67</td>
</tr>
</tbody>
</table>

EN 410 EN 410 EN 410 EN 410 N.B. vedi nota in premessa
5 - VETRATA ISOLANTE BASSOEMISSIONE CON UN VETRO TEMPRATO DI SICUREZZA

- Float chiaro 4 mm
- Intercapedine (vedi tabella per dimensioni e gas di riempimento)
- Float bassoemissivo temprato 4 mm (*coating in faccia 3*)

<table>
<thead>
<tr>
<th>Peso</th>
<th>Caratteristiche ottiche</th>
<th>Caratteristiche energetiche</th>
<th>Isolamento acustico</th>
<th>Caratteristiche di sicurezza</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Kg/m²)</td>
<td>τᵥ (%)</td>
<td>ρᵥ (%)</td>
<td>g (%)</td>
<td>αₑ (%)</td>
</tr>
<tr>
<td>20</td>
<td>80</td>
<td>12</td>
<td>64</td>
<td>17</td>
</tr>
<tr>
<td>EN 410</td>
<td>EN 410</td>
<td>EN 410</td>
<td>EN 410</td>
<td>EN 717-1</td>
</tr>
</tbody>
</table>

* Vedi norma UNI EN 12758

6 - VETRATA ISOLANTE BASSOEMISSIONE E SELETTIVA CON UN VETRO TEMPRATO DI SICUREZZA

La vetrata isolante, oltre a contenere un coating con prestazioni bassoemissive, può essere composta con coating aventi prestazioni selettive diverse in ragione della tipologia del coating impiegato, come esemplificato nella tabella seguente.

A titolo meramente indicativo e con la sola finalità di illustrare tali variazioni, viene proposta una vetrata di composizione:

- Float chiaro bassoemissivo e selettivo 4 mm (*coating in faccia 2*)
- Intercapedine 16 mm argon (90%)
- Float chiaro temprato 4 mm

In questo caso, la vetrata ha le proprietà indicate nella tabella seguente, ferme restando le prestazioni acustiche e di sicurezza indicate per l’analogo prodotto di cui al precedente punto 5:

<table>
<thead>
<tr>
<th>Peso</th>
<th>Caratteristiche ottiche</th>
<th>Caratteristiche energetiche</th>
<th>Selettività</th>
<th>Trasmissanza termica</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Kg/m²)</td>
<td>τᵥ (%)</td>
<td>ρᵥ (%)</td>
<td>g (%)</td>
<td>αₑ (%)</td>
</tr>
<tr>
<td>20</td>
<td>67</td>
<td>24</td>
<td>45</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>72</td>
<td>10</td>
<td>43</td>
<td>27</td>
</tr>
<tr>
<td>EN 410</td>
<td>EN 410</td>
<td>EN 410</td>
<td>EN 410</td>
<td>EN 410</td>
</tr>
</tbody>
</table>

N.B. vedi nota in premessa
7 - VETRATA ISOLANTE BASSOEMISSIVA TRIPLA CON UN VETRO TEMPRATO DI SICUREZZA

> Float bassoemissivo 4 mm (coating in faccia 2)
> Intercapedine (vedi tabella per dimensioni e gas di riempimento)
> Float chiaro 4 mm
> Intercapedine (vedi tabella per dimensioni e gas di riempimento)
> Float temprato bassoemissivo 4 mm (coating in faccia 5)

<table>
<thead>
<tr>
<th>Peso</th>
<th>Caratteristiche ottiche</th>
<th>Caratteristiche energetiche</th>
<th>Isolamento acustico</th>
<th>Caratteristiche di sicurezza</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Kg/m²)</td>
<td>τᵥ (%)</td>
<td>ρᵥ (%)</td>
<td>g (%)</td>
<td>αₑ (%)</td>
</tr>
<tr>
<td>30</td>
<td>71</td>
<td>16</td>
<td>51</td>
<td>24</td>
</tr>
<tr>
<td>EN 410</td>
<td>EN 410</td>
<td>EN 410</td>
<td>EN 410</td>
<td>EN 717-1</td>
</tr>
</tbody>
</table>

* Vedi norma UNI EN 12758

Trasmittanza termica in funzione di intercapedine e gas

<table>
<thead>
<tr>
<th>Gas di riempimento</th>
<th>Spessore (nominale) intercapedine (mm)</th>
<th>Uₑ (W/m²K)</th>
<th>Spessore totale vetrata (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aria-Aria</td>
<td>9-9</td>
<td>1.2</td>
<td>30</td>
</tr>
<tr>
<td>Aria-Aria</td>
<td>12-12</td>
<td>0.9</td>
<td>36</td>
</tr>
<tr>
<td>Aria-Aria</td>
<td>16-16</td>
<td>0.8</td>
<td>44</td>
</tr>
<tr>
<td>Argon-Argon 90%</td>
<td>9-9</td>
<td>0.9</td>
<td>30</td>
</tr>
<tr>
<td>Argon-Argon 90%</td>
<td>12-12</td>
<td>0.7</td>
<td>36</td>
</tr>
<tr>
<td>Argon-Argon 90%</td>
<td>16-16</td>
<td>0.6</td>
<td>44</td>
</tr>
</tbody>
</table>

8 - VETRATA ISOLANTE BASSOEMISSIVA E SELETTIVA TRIPLA CON UN VETRO TEMPRATO DI SICUREZZA

Sul mercato sono disponibili coating dalle prestazioni assai differenziate. A seconda di quale si utilizzi, o in taluni casi di come si combinino coating con diverse caratteristiche sulla stessa vetrata, si possono ottenere risultati estremamente diversi.

A tal fine viene proposta, a titolo meramente indicativo e con la sola finalità di illustrare tali variazioni, due vetrate che differiscono solo per il coating applicato sulla lastra esterna:

> Float selettivo 4 mm (coating in faccia 2)
> Intercapedine 16 mm argon (90%)
> Float chiaro 4 mm
> Intercapedine 16 mm argon (90%)
> Float temprato basseommissivo 4 mm (coating in faccia 5)

Le vetrate avranno le proprietà con le variazioni indicate nella tabella seguente, ferme restando le prestazioni acustiche e di sicurezza indicate per l’analogo prodotto di cui al precedente punto 7:

<table>
<thead>
<tr>
<th>Peso</th>
<th>Caratteristiche ottiche</th>
<th>Caratteristiche energetiche</th>
<th>Selettività</th>
<th>Trasmittanza termica</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Kg/m²)</td>
<td>τᵥ (%)</td>
<td>ρᵥ (%)</td>
<td>g (%)</td>
<td>αₑ (%)</td>
</tr>
<tr>
<td>30</td>
<td>60</td>
<td>26</td>
<td>41</td>
<td>21</td>
</tr>
<tr>
<td>64</td>
<td>12</td>
<td>39</td>
<td>32</td>
<td>1.64</td>
</tr>
<tr>
<td>EN 410</td>
<td>EN 410</td>
<td>EN 410</td>
<td>EN 410</td>
<td></td>
</tr>
</tbody>
</table>

N.B. vedi nota in premessa
9 - VETRATA ISOLANTE BASSOEMISSIONE CON UN VETRO STRATIFICATO DI SICUREZZA

- Float chiaro 4 mm
- Intercapedine (vedi tabella per dimensioni e gas di riempimento)
- Vetro stratificato 33.1 (coating in faccia 3)

<table>
<thead>
<tr>
<th>Peso (Kg/m²)</th>
<th>Caratteristiche ottiche</th>
<th>Caratteristiche energetiche</th>
<th>Isolamento acustico</th>
<th>Caratteristiche di sicurezza</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>τᵥ (%)</td>
<td>ρᵥ (%)</td>
<td>g (%)</td>
<td>αₑ (%)</td>
</tr>
<tr>
<td>26</td>
<td>78</td>
<td>13</td>
<td>61</td>
<td>23</td>
</tr>
<tr>
<td>EN 410</td>
<td>EN 410</td>
<td>EN 410</td>
<td>EN 410</td>
<td>EN 717-1</td>
</tr>
</tbody>
</table>

* Vedi norma UNI EN 12758

9 - VETRATA ISOLANTE BASSOEMISSIONE CON UN VETRO STRATIFICATO DI SICUREZZA

La vetrata isolante, oltre a contenere un coating con prestazioni bassoemissive, può essere composta con coating aventi prestazioni selettive diverse in ragione della tipologia del coating impiegato, come esemplificato nella tabella seguente.

A titolo meramente indicativo e con la sola finalità di illustrare tali variazioni, viene proposta una vetrata di composizione:

- Float chiaro bassoemissivo e selettivo 4 mm (coating in faccia 2)
- Intercapedine 16 mm argon (90%)
- Vetro stratificato 33.1

In questo caso, la vetrata ha le proprietà indicate nella tabella seguente, ferme restando le prestazioni acustiche e di sicurezza indicate per l’analogo prodotto di cui al precedente punto 9:

<table>
<thead>
<tr>
<th>Peso (Kg/m²)</th>
<th>Caratteristiche ottiche</th>
<th>Caratteristiche energetiche</th>
<th>Selettività</th>
<th>Trasmittanza termica</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>τᵥ (%)</td>
<td>ρᵥ (%)</td>
<td>g (%)</td>
<td>αₑ (%)</td>
</tr>
<tr>
<td>20</td>
<td>65</td>
<td>24</td>
<td>45</td>
<td>20</td>
</tr>
<tr>
<td>70</td>
<td>10</td>
<td>43</td>
<td>30</td>
<td>1.63</td>
</tr>
<tr>
<td>EN 410</td>
<td>EN 410</td>
<td>EN 410</td>
<td>EN 410</td>
<td>EN 410</td>
</tr>
</tbody>
</table>

N.B. vedi nota in premessa
11 - VETRATA ISOLANTE BASSOEMISSIONE TRIPLA CON UN VETRO STRATIFICATO DI SICUREZZA

- Float bassoemissivo 4 mm (*coating in faccia 2*)
- Intercapedine (vedi tabella per dimensioni e gas di riempimento)
- Float chiaro 4 mm
- Intercapedine (vedi tabella per dimensioni e gas di riempimento)
- Stratificato 33.1 (*coating in faccia 5*)

<table>
<thead>
<tr>
<th>Peso (Kg/m²)</th>
<th>Caratteristiche ottiche</th>
<th>Caratteristiche energetiche</th>
<th>Isolamento acustico</th>
<th>Caratteristiche di sicurezza</th>
</tr>
</thead>
<tbody>
<tr>
<td>35.5</td>
<td>τᵣ (%)</td>
<td>ρᵥ (%)</td>
<td>g (%)</td>
<td>αₑ (%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Rₓ * (dB)</td>
</tr>
<tr>
<td>70</td>
<td>16</td>
<td>50</td>
<td>27</td>
<td>35</td>
</tr>
</tbody>
</table>

EN 410 EN 410 EN 410 EN 410 EN 717-1 UNI EN 12600

* Vedi norma UNI EN 12758

Trasmissività termica in funzione di intercapedine e gas

<table>
<thead>
<tr>
<th>Gas di riempimento</th>
<th>Spessore (nominaле) intercapedine (mm)</th>
<th>Uₑ (W/m²K)</th>
<th>Spessore totale vetrata (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aria-Aria</td>
<td>9-9</td>
<td>1.2</td>
<td>32.4</td>
</tr>
<tr>
<td>Aria-Aria</td>
<td>12-12</td>
<td>0.9</td>
<td>38.4</td>
</tr>
<tr>
<td>Aria-Aria</td>
<td>16-16</td>
<td>0.8</td>
<td>46.4</td>
</tr>
<tr>
<td>Argon-Argon 90%</td>
<td>9-9</td>
<td>0.9</td>
<td>32.4</td>
</tr>
<tr>
<td>Argon-Argon 90%</td>
<td>12-12</td>
<td>0.7</td>
<td>38.4</td>
</tr>
<tr>
<td>Argon-Argon 90%</td>
<td>16-16</td>
<td>0.6</td>
<td>46.4</td>
</tr>
</tbody>
</table>

12 - VETRATA ISOLANTE BASSOEMISSIONE E SELETTIVA TRIPLA CON UN VETRO STRATIFICATO DI SICUREZZA

Sul mercato sono disponibili coating dalle prestazioni assai differenziate. A seconda di quale si utilizzi, o in taluni casi di come si combinino coating con diverse caratteristiche sulla stessa vetrata, si possono ottenere risultati estremamente diversi.

A tal fine viene proposta, a titolo meramente indicativo e con la sola finalità di illustare tali variazioni, due vetrate che differiscono solo per il coating applicato sulla lastra esterna:

- Float selettivo 4 mm (*coating in faccia 2*)
- Intercapedine 16 mm argon (90%)
- Float chiaro 4 mm
- Intercapedine 16 mm argon (90%)
- Stratificato 33.1 (*coating in faccia 5*)

Le vetrate avranno le proprietà con le variazioni indicate nella tabella seguente, ferme restando le prestazioni acustiche e di sicurezza indicate per l’analogo prodotto di cui al precedente punto 11:

<table>
<thead>
<tr>
<th>Peso (Kg/m²)</th>
<th>Caratteristiche ottiche</th>
<th>Caratteristiche energetiche</th>
<th>Selettività</th>
<th>Trasmissività termica</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>τᵣ (%)</td>
<td>ρᵥ (%)</td>
<td>g (%)</td>
<td>αₑ (%)</td>
</tr>
<tr>
<td>30</td>
<td>59</td>
<td>26</td>
<td>40</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>63</td>
<td>12</td>
<td>39</td>
<td>34</td>
</tr>
</tbody>
</table>

EN 410 EN 410 EN 410 EN 410

N.B. vedi nota in premessa
13 - VETRATA ISOLANTE ACUSTICA CON UN VETRO STRATIFICATO DI SICUREZZA

- Float chiaro 6 mm
- Intercapedine (vedi tabella per dimensioni e gas di riempimento)
- Stratificato acustico 44.1 A (coating in faccia 3)

<table>
<thead>
<tr>
<th>Peso (%)</th>
<th>Caratteristiche ottiche</th>
<th>Caratteristiche energetiche</th>
<th>Isolamento acustico</th>
</tr>
</thead>
<tbody>
<tr>
<td>36.25</td>
<td>75</td>
<td>12</td>
<td>57</td>
</tr>
<tr>
<td></td>
<td>EN 410</td>
<td>EN 410</td>
<td>EN 410</td>
</tr>
</tbody>
</table>

** Valori sperimentali

<table>
<thead>
<tr>
<th>Gas di riempimento</th>
<th>Spessore (nominale) intercapedine (mm)</th>
<th>U_g (W/m²K)</th>
<th>Spessore totale vetrata (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aria</td>
<td>6</td>
<td>2.4</td>
<td>20.5</td>
</tr>
<tr>
<td>Aria</td>
<td>9</td>
<td>1.9</td>
<td>23.5</td>
</tr>
<tr>
<td>Aria</td>
<td>12</td>
<td>1.6</td>
<td>26.5</td>
</tr>
<tr>
<td>Aria</td>
<td>16</td>
<td>1.4</td>
<td>30.5</td>
</tr>
<tr>
<td>Argon (90%)</td>
<td>6</td>
<td>2.0</td>
<td>20.5</td>
</tr>
<tr>
<td>Argon (90%)</td>
<td>9</td>
<td>1.5</td>
<td>23.5</td>
</tr>
<tr>
<td>Argon (90%)</td>
<td>12</td>
<td>1.3</td>
<td>26.5</td>
</tr>
<tr>
<td>Argon (90%)</td>
<td>16</td>
<td>1.1</td>
<td>30.5</td>
</tr>
</tbody>
</table>

N.B. vedi nota in premessa
14 - VETRATA ISOLANTE ACUSTICA CON DUE VETRI STRATIFICATI DI SICUREZZA

- Stratificato acustico 44.2 A
- Intercapedine (vedi tabella per dimensioni e gas di riempimento)
- Stratificato acustico 66.2 A (*coating in faccia 3*)

<table>
<thead>
<tr>
<th>Peso</th>
<th>Caratteristiche ottiche</th>
<th>Caratteristiche energetiche</th>
<th>Isolamento acustico</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Kg/m²)</td>
<td>τᵥ (%)</td>
<td>ρᵥ (%)</td>
<td>g (%)</td>
</tr>
<tr>
<td>54</td>
<td>72</td>
<td>12</td>
<td>53</td>
</tr>
<tr>
<td></td>
<td>EN 410</td>
<td>EN 410</td>
<td>EN 410</td>
</tr>
</tbody>
</table>

** Valori sperimentali

<table>
<thead>
<tr>
<th>Trasmittanza termica in funzione di intercapedine e gas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gas di riempimento</td>
</tr>
<tr>
<td>Aria</td>
</tr>
<tr>
<td>Aria</td>
</tr>
<tr>
<td>Aria</td>
</tr>
<tr>
<td>Aria</td>
</tr>
<tr>
<td>Argon (90%)</td>
</tr>
<tr>
<td>Argon (90%)</td>
</tr>
<tr>
<td>Argon (90%)</td>
</tr>
<tr>
<td>Argon (90%)</td>
</tr>
</tbody>
</table>

Caratteristiche di sicurezza

<table>
<thead>
<tr>
<th>Prova di resistenza</th>
<th>Classe</th>
<th>Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>Impatto secondo prova del pendolo</td>
<td>1(B)1 + 1(B)1</td>
<td>UNI EN 12600</td>
</tr>
<tr>
<td>Resistenza all'effrazione</td>
<td>NPD</td>
<td>UNI EN 356</td>
</tr>
</tbody>
</table>

N.B. vedi nota in premessa
Sede

Via Barberini, 67
00187 Roma
Tel. 06 4871130 (r.a.)
Fax 06 42011162
e-mail: assovetro@assovetro.it
www.assovetro.it

Ufficio di Milano

Piazzale Giovanni dalle Bande Nere, 9
20146 Milano

Sede

Via dei Prefetti, 46
00186 Roma
Tel. 06 6832980
Fax 06 68307563
e-mail: info@ea.ancitel.it
www.ea.ancitel.it